硫酸
流出物
萃取(化学)
化学
废水
污水处理
消化(炼金术)
有机质
制浆造纸工业
环境化学
色谱法
环境科学
环境工程
无机化学
有机化学
工程类
作者
Wenjian Lao,Sydney Dial,Marina Salmon,Charles S. Wong
标识
DOI:10.1016/j.scitotenv.2024.170528
摘要
Accurate analysis of microplastic particles (MPs) in environmental samples requires removal of interferences during sample preparation. Wastewater samples are interference-rich and thus particularly challenging, with concentrated sulfuric acid currently deemed impractical as a reagent. Therefore, this study aimed to establish a straightforward, effective, and safe method employing concentrated sulfuric acid and potassium hydroxide to eliminate interferents from effluent samples obtained from wastewater treatment plants (WWTPs). We found that 80 % sulfuric acid at room temperature with a brief contact time of 5 min was viable through a qualitative spot test involving 37 plastics categorized into three types (I, II, and III) based on their polymer structure's oxygen position. A quantitative assessment revealed that treatments involving H2SO4 and KOH (20 %, 24 h, 48 °C), either separately or in combination, had no discernible physical impact on the overall plastics, except for a subtle one for Type III plastics (e.g., nylon and PMMA) known to be labile under harsh pH conditions. This acid/alkaline digestion (AAD) method, incorporating such conditions for H2SO4 and KOH treatments, yielded a high mass removal efficacy (97.8 ± 2.4 %, n = 13) for eliminating natural particle interferents for primary, secondary, and tertiary effluent samples. Furthermore, the AAD method allowed for the determination of MPs in effluents with high surrogate particle recoveries (e.g., 95.1 % for larger than 500 μm size fraction). This method is readily adaptable to create appropriate protocols for different types of environmental matrices.
科研通智能强力驱动
Strongly Powered by AbleSci AI