Triple‐negative breast cancer survival prediction using artificial intelligence through integrated analysis of tertiary lymphoid structures and tumor budding

医学 三阴性乳腺癌 H&E染色 肿瘤科 乳腺癌 列线图 多路复用 免疫组织化学 病理 内科学 癌症 生物信息学 生物
作者
Xupeng Hou,Xueyang Li,Yunwei Han,Hua Xu,Yongjie Xie,Tianxing Zhou,Tongyuan Xue,Xiaolong Qian,Jiazhen Li,Chenyu Wang,Jingrui Yan,Xiaojing Guo,Ying Liu,Jing Liu
出处
期刊:Cancer [Wiley]
卷期号:130 (S8): 1499-1512 被引量:6
标识
DOI:10.1002/cncr.35261
摘要

Abstract Background Triple‐negative breast cancer (TNBC) is a highly heterogeneous and clinically aggressive disease. Accumulating evidence indicates that tertiary lymphoid structures (TLSs) and tumor budding (TB) are significantly correlated with the outcomes of patients who have TNBC, but no integrated TLS‐TB profile has been established to predict their survival. The objective of this study was to investigate the relationship between the TLS/TB ratio and clinical outcomes of patients with TNBC using artificial intelligence (AI)‐based analysis. Methods The infiltration levels of TLSs and TB were evaluated using hematoxylin and eosin staining, immunohistochemistry staining, and AI‐based analysis. Various cellular subtypes within TLS were determined by multiplex immunofluorescence. Subsequently, the authors established a nomogram model, conducted calibration curve analyses, and performed decision curve analyses using R software. Results In both the training and validation cohorts, the antitumor/protumor model established by the authors demonstrated a positive correlation between the TLS/TB index and the overall survival (OS) and relapse‐free survival (RFS) of patients with TNBC. Notably, patients who had a high percentage of CD8‐positive T cells, CD45RO‐positive T cells, or CD20‐positive B cells within the TLSs experienced improved OS and RFS. Furthermore, the authors developed a comprehensive TLS‐TB profile nomogram based on the TLS/TB index. This novel model outperformed the classical tumor‐lymph node‐metastasis staging system in predicting the OS and RFS of patients with TNBC. Conclusions A novel strategy for predicting the prognosis of patients with TNBC was established through integrated AI‐based analysis and a machine‐learning workflow. The TLS/TB index was identified as an independent prognostic factor for TNBC. This nomogram‐based TLS‐TB profile would help improve the accuracy of predicting the prognosis of patients who have TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江小美发布了新的文献求助10
1秒前
2秒前
missa发布了新的文献求助10
2秒前
岁月轮回发布了新的文献求助10
3秒前
Cyrus发布了新的文献求助10
3秒前
kun应助Aizen采纳,获得10
7秒前
8秒前
西早07完成签到,获得积分10
8秒前
Newky发布了新的文献求助10
8秒前
小飞飞应助听闻墨笙采纳,获得10
9秒前
10秒前
不倦应助5656采纳,获得10
11秒前
扎心发布了新的文献求助10
12秒前
无奈皮卡丘完成签到 ,获得积分10
12秒前
虚拟的芾完成签到 ,获得积分10
12秒前
隐形曼青应助三金采纳,获得10
12秒前
原子完成签到,获得积分10
13秒前
莫之白完成签到,获得积分10
13秒前
14秒前
15秒前
missa完成签到,获得积分10
15秒前
leegawei关注了科研通微信公众号
16秒前
16秒前
GY完成签到,获得积分10
17秒前
17秒前
18秒前
一粟的粉r完成签到 ,获得积分10
18秒前
21秒前
baifeng应助影子1127采纳,获得10
21秒前
扎心发布了新的文献求助10
22秒前
风中的凝安完成签到,获得积分10
22秒前
蓝色芒果完成签到,获得积分10
23秒前
专注的可乐完成签到,获得积分10
24秒前
江小美完成签到,获得积分10
25秒前
友好羊应助追光采纳,获得10
25秒前
26秒前
传奇3应助风中的凝安采纳,获得20
26秒前
科研通AI5应助温柔珊采纳,获得10
29秒前
三金发布了新的文献求助10
29秒前
在水一方应助丰富采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779966
求助须知:如何正确求助?哪些是违规求助? 3325374
关于积分的说明 10222718
捐赠科研通 3040551
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612