亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving imbalance classification via ensemble learning based on two-stage learning

计算机科学 人工智能 协变量 机器学习 班级(哲学) 罗伊特 集成学习 人工神经网络 逻辑回归
作者
Na Liu,Jiaqi Wang,Yuexin Zhu,Lihong Wan,Qingdu Li
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media]
卷期号:17
标识
DOI:10.3389/fncom.2023.1296897
摘要

The excellent performance of deep neural networks on image classification tasks depends on a large-scale high-quality dataset. However, the datasets collected from the real world are typically biased in their distribution, which will lead to a sharp decline in model performance, mainly because an imbalanced distribution results in the prior shift and covariate shift. Recent studies have typically used a two-stage learning method consisting of two rebalancing strategies to solve these problems, but the combination of partial rebalancing strategies will damage the representational ability of the networks. In addition, the two-stage learning method is of little help in addressing the problem of covariate shift. To solve the above two issues, we first propose a sample logit-aware reweighting method called (SLA), which can not only repair the weights of majority class hard samples and minority class samples but will also integrate with logit adjustment to form a stable two-stage learning strategy. Second, to solve the covariate shift problem, inspired by ensemble learning, we propose a multi-domain expert specialization model, which can achieve a more comprehensive decision by averaging expert classification results from multiple different domains. Finally, we combine SLA and logit adjustment into a two-stage learning method and apply our model to the CIFAR-LT and ImageNet-LT datasets. Compared with the most advanced methods, our experimental results show excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
于洋完成签到 ,获得积分10
14秒前
大大小完成签到,获得积分10
17秒前
乐乐完成签到,获得积分10
24秒前
610完成签到 ,获得积分10
27秒前
Andy_2024发布了新的文献求助30
29秒前
32秒前
35秒前
rpe发布了新的文献求助20
35秒前
jeff发布了新的文献求助10
38秒前
39秒前
CodeCraft应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
完美世界应助科研通管家采纳,获得10
43秒前
傲娇的曼香完成签到,获得积分10
48秒前
瑜玦完成签到,获得积分10
48秒前
52秒前
黙宇循光完成签到 ,获得积分10
55秒前
伯赏夏彤发布了新的文献求助10
58秒前
Laow完成签到,获得积分20
59秒前
1分钟前
优秀的流沙应助lei029采纳,获得10
1分钟前
1分钟前
TongKY完成签到 ,获得积分10
1分钟前
三尺缺口发布了新的文献求助10
1分钟前
住在魔仙堡的鱼完成签到 ,获得积分10
1分钟前
LabRat完成签到,获得积分10
1分钟前
Andy_2024完成签到,获得积分10
1分钟前
1分钟前
三尺缺口完成签到,获得积分10
1分钟前
1分钟前
qingzx发布了新的文献求助10
1分钟前
wzzznh完成签到 ,获得积分10
1分钟前
gstaihn发布了新的文献求助10
1分钟前
1分钟前
2分钟前
xu完成签到,获得积分20
2分钟前
充电宝应助体贴仙人掌采纳,获得10
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792423
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281893
捐赠科研通 3053438
什么是DOI,文献DOI怎么找? 1675609
邀请新用户注册赠送积分活动 803592
科研通“疑难数据库(出版商)”最低求助积分说明 761468