亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A broad learning model guided by global and local receptive causal features for online incremental machinery fault diagnosis

计算机科学 人工智能 机器学习 断层(地质) 模式识别(心理学) 地震学 地质学
作者
Xuefang Xu,Shuo Bao,Pengfei Liang,Zijian Qiao,Changbo He,Peiming Shi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123124-123124 被引量:10
标识
DOI:10.1016/j.eswa.2023.123124
摘要

Intelligent fault diagnosis (IFD) plays a significant function in ensuring the reliable operation of mechanical equipment. However, most existing IFD methods are trained in batch learning way and the feature extraction process is unexplainable and it is challenging to satisfy the complex diagnosis requirements. Thus, this paper proposes a causal broad learning model (CBLM) guided by global and multi-scale local causal features for incremental machinery fault diagnosis. Firstly, rich global and multi-scale local causal features are extracted for training CBLM. Then, incremental learning capability is developed to update model by expanding or modifying the original weights, considerably reducing the time consumption and greatly improving the computational efficiency. When the initial model has inadequate nodes for feature learning, CBLM performs structural incremental learning by adding extra nodes to improve the diagnostic performance. As new samples with various fault degrees are entered, sample incremental learning is built to rapidly update based on previous model without retraining. Finally, two experimental results on bearings indicate that CBLM improves the testing accuracy of the initial model by 0.13% to 52.22% and 1.95% to 57.64%, respectively, and remains above 97.22% and 99.77% for the updated models. The training time consumption is reduced by 25.06 seconds to 133.0 seconds, 20.78 seconds and 141.9 seconds, respectively, and the subsequent models update time are only about 12 seconds and 10 seconds. Consequently, the proposed CBLM is an effective online IFD method because it is obviously superior to the existing IFD methods in regards to time consumption and diagnosis accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Cakes完成签到 ,获得积分10
19秒前
22秒前
ZgnomeshghT发布了新的文献求助10
35秒前
MchemG完成签到,获得积分0
35秒前
nini发布了新的文献求助10
36秒前
41秒前
没有昵称完成签到 ,获得积分10
47秒前
~静发布了新的文献求助10
47秒前
科研通AI5应助nini采纳,获得10
53秒前
1分钟前
1分钟前
feiying发布了新的文献求助10
1分钟前
feiying完成签到,获得积分10
1分钟前
自信号厂完成签到 ,获得积分10
1分钟前
nini发布了新的文献求助10
1分钟前
科研通AI5应助nini采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
2分钟前
Milton_z完成签到 ,获得积分10
2分钟前
lisaltp完成签到,获得积分10
2分钟前
2分钟前
lisaltp发布了新的文献求助30
2分钟前
nini发布了新的文献求助10
2分钟前
yema完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助nini采纳,获得10
2分钟前
2分钟前
orixero应助众人皆醉我独醒采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
Rr完成签到,获得积分10
3分钟前
4分钟前
nini发布了新的文献求助10
4分钟前
Owen应助nini采纳,获得10
4分钟前
5分钟前
nini发布了新的文献求助10
5分钟前
3D完成签到,获得积分10
5分钟前
852应助科研通管家采纳,获得10
5分钟前
独特的夜阑完成签到 ,获得积分10
5分钟前
Mipe完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830415
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475376
捐赠科研通 3092588
什么是DOI,文献DOI怎么找? 1702156
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771093