Pansharpening Using Unsupervised Generative Adversarial Networks With Recursive Mixed-Scale Feature Fusion

计算机科学 全色胶片 人工智能 特征(语言学) 多光谱图像 模式识别(心理学) 比例(比率) 特征提取 融合机制 图像分辨率 数据挖掘 融合 哲学 语言学 物理 量子力学 脂质双层融合
作者
Yuanyuan Wu,Yuchun Li,Siling Feng,Mengxing Huang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 3742-3759 被引量:14
标识
DOI:10.1109/jstars.2023.3259014
摘要

Panchromatic sharpening (pansharpening) is an important technology for improving the spatial resolution of multispectral (MS) images. The majority of the models are implemented at the reduced resolution, leading to unfavorable results at the full resolution. Moreover, the complicated relationship between MS and panchromatic (PAN) images is often ignored in detail injection. For the mentioned problems, unsupervised generative adversarial networks with recursive mixed-scale feature fusion for pansharpening (RMFF-UPGAN) are modeled to boost the spatial resolution and preserve the spectral information. RMFF-UPGAN comprises a generator and two U-shaped discriminators. A dual-stream trapezoidal branch is designed in the generator to obtain multiscale information. Further, a recursive mixed-scale feature fusion subnetwork is designed. Perform a prior fusion on the extracted MS and PAN features of the same scale. A mixed-scale fusion is conducted on the prior fusion results of the fine-scale and coarse-scale. The fusion is executed sequentially in the above manner building a recursive mixed-scale fusion structure and finally generating key information. A compensation information mechanism is also designed for the reconstruction of key information to compensate for information. A nonlinear rectification block for the reconstructed information is developed to overcome the distortion induced by neglecting the complicated relationship between MS and PAN images. Two U-shaped discriminators are designed and a new composite loss function is defined. The presented model is validated using two satellite data and the outcomes reveal better than the prevalent approaches regarding both visual assessment and objective indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助hugeng采纳,获得10
1秒前
1秒前
慕青应助灵巧的尔芙采纳,获得10
2秒前
旺仔牛奶完成签到,获得积分10
2秒前
温暖芸发布了新的文献求助10
3秒前
一念初见发布了新的文献求助10
5秒前
Booksiy2发布了新的文献求助10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
高贵的雅寒完成签到,获得积分10
5秒前
邰归应助科研通管家采纳,获得150
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
聪明短靴发布了新的文献求助10
6秒前
Ava应助舒适路人采纳,获得10
7秒前
陆千万完成签到,获得积分10
10秒前
10秒前
默默毛豆发布了新的文献求助10
12秒前
可爱的函函应助温暖芸采纳,获得10
12秒前
12秒前
旺仔牛奶发布了新的文献求助10
12秒前
syp0929发布了新的文献求助50
13秒前
斯文的小旋风应助piahui采纳,获得20
13秒前
14秒前
14秒前
hugeng发布了新的文献求助10
15秒前
15秒前
刘一一完成签到,获得积分10
16秒前
脑洞疼应助猩心采纳,获得10
16秒前
勤奋的真完成签到,获得积分10
17秒前
所所应助ikomae采纳,获得10
18秒前
19秒前
19秒前
传奇3应助舒适路人采纳,获得10
19秒前
20秒前
YYY完成签到,获得积分10
20秒前
科研小哥完成签到,获得积分0
20秒前
20秒前
22秒前
Tao关闭了Tao文献求助
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329279
关于积分的说明 10241157
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268