Predicting self-diffusion coefficients of small molecular fluids using machine learning and the statistical associating fluid theory for Mie segments

物理 统计物理学 扩散 经典力学 机械 热力学
作者
Justinas Šlepavičius,Alessandro Patti,Carlos Avendaño
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1) 被引量:1
标识
DOI:10.1063/5.0242992
摘要

In our previous work [Šlepavičius et al.,“Application of machine-learning algorithms to predict the transport properties of Mie fluids,” J. Chem. Phys. 159, 024127 (2023)], we applied three machine learning (ML) models to predict the self-diffusion coefficient of spherical particles interacting via the Mie potential. Here, we introduce an optimization approach using the so-called statistical associating fluid theory for Mie segments and available vapor–liquid equilibria data to obtain molecular parameters for both Mie and Lennard-Jones potentials to describe the diffusion coefficient of 16 molecules described as a single sphere. Our ML models utilize these molecular parameters to predict the self-diffusion of these molecules. We conduct a comparative analysis between the molecular parameters derived from our thermodynamic approach and those obtained through direct fitting of the experimental self-diffusion coefficients. Our findings indicate that the predictive accuracy remains largely unaffected by the specific repulsive and attractive exponents of the Mie potential employed, provided that the fitting of the molecular parameters is precise. The Mie parameters obtained within a thermodynamic framework exhibit a higher coefficient of determination (R2) and absolute average relative deviation values compared to those derived from molecular parameters derived from fitting the self-diffusion coefficient, indicating their superior precision at higher values of the self-diffusion coefficient. Despite this discrepancy, the overall precision of both methodologies remains comparable. Given the abundance of precise thermodynamic data in contrast to self-diffusion data, we advocate the thermodynamic fitting approach as the preferred method for acquiring accurate Mie coefficients, essential to predict self-diffusion coefficients with ML and semi-empirical models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
5秒前
大雄发布了新的文献求助10
7秒前
10秒前
ESC惠子子子子子完成签到 ,获得积分10
14秒前
16秒前
16秒前
FashionBoy应助zyj采纳,获得10
18秒前
19秒前
不会学习的小郭完成签到 ,获得积分10
19秒前
英吉利25发布了新的文献求助10
24秒前
27秒前
31秒前
欢呼的丁真完成签到,获得积分10
32秒前
33秒前
33秒前
轩辕剑身完成签到,获得积分0
35秒前
花花521完成签到,获得积分10
36秒前
37秒前
nano完成签到 ,获得积分10
38秒前
研友_Z1eDgZ完成签到,获得积分10
38秒前
飞鸿影下完成签到 ,获得积分10
41秒前
wansida完成签到,获得积分10
43秒前
英吉利25发布了新的文献求助10
44秒前
44秒前
swordshine完成签到,获得积分10
45秒前
46秒前
时代更迭完成签到 ,获得积分10
50秒前
52秒前
xiaosui完成签到 ,获得积分10
57秒前
58秒前
shiqiang mu应助科研通管家采纳,获得20
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
和平使命应助科研通管家采纳,获得10
59秒前
1分钟前
大雄发布了新的文献求助10
1分钟前
香蕉觅云应助Haru采纳,获得10
1分钟前
英吉利25发布了新的文献求助10
1分钟前
Itazu完成签到,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4086742
求助须知:如何正确求助?哪些是违规求助? 3625635
关于积分的说明 11497408
捐赠科研通 3339081
什么是DOI,文献DOI怎么找? 1835767
邀请新用户注册赠送积分活动 903914
科研通“疑难数据库(出版商)”最低求助积分说明 822005