Zinc oxide nanoparticles cooperate with the phyllosphere to promote grain yield and nutritional quality of rice under heatwave stress

叶圈 粮食品质 光合作用 生物强化 鲁比斯科 APX公司 化学 农学 园艺 抗氧化剂 生物 超氧化物歧化酶 生物化学 细菌 遗传学 有机化学
作者
Shuqing Guo,Xiangang Hu,Zixuan Wang,Fubo Yu,Xuan Hou,Baoshan Xing
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (46) 被引量:5
标识
DOI:10.1073/pnas.2414822121
摘要

To address rising global food demand, the development of sustainable technologies to increase productivity is urgently needed. This study revealed that foliar application of zinc oxide nanoparticles (ZnO NPs; 30 to 80 nm, 0.67 mg/d per plant, 6 d) to rice leaves under heatwave (HW) stress increased the grain yield and nutritional quality. Compared with the HW control, the HWs+ZnO group presented increases in the grain yield, grain protein content, and amino acid content of 22.1%, 11.8%, and 77.5%, respectively. Nanoscale ZnO aggregated on the leaf surface and interacted with leaf surface molecules. Compared with that at ambient temperature, HW treatment increased the dissolution of ZnO NPs on the leaf surface by 25.9% and facilitated their translocation to mesophyll cells. The Zn in the leaves existed as both ionic Zn and particulate ZnO. Compared with the HW control, foliar application of ZnO NPs under HW conditions increased leaf nutrient levels (Zn, Mn, Cu, Fe, and Mg) by 15.8 to 416.9%, the chlorophyll content by 22.2 to 24.8%, Rubisco enzyme activity by 21.2%, and antioxidant activity by 26.7 to 31.2%. Transcriptomic analyses revealed that ZnO NPs reversed HW-induced transcriptomic dysregulation, thereby enhancing leaf photosynthesis by 74.4%. Additionally, ZnO NPs increased the diversity, stability, and enrichment of beneficial microbial taxa and protected the phyllosphere microbial community from HW damage. This work elucidates how NPs interact with the phyllosphere, highlighting the potential of NPs to promote sustainable agriculture, especially under extreme climate events (e.g., HWs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYT完成签到,获得积分10
2秒前
小二郎应助一一一采纳,获得10
4秒前
iwhsgfes完成签到,获得积分10
6秒前
Hale完成签到,获得积分0
9秒前
不知完成签到 ,获得积分10
10秒前
10秒前
12秒前
JIMMY发布了新的文献求助10
14秒前
ylky完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
18秒前
18秒前
18秒前
19秒前
19秒前
xxxxxxxxx完成签到 ,获得积分10
19秒前
20秒前
LLL完成签到,获得积分10
20秒前
21秒前
有热心愿意完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
脑洞疼应助charon采纳,获得10
26秒前
qqq完成签到,获得积分10
28秒前
斑比完成签到 ,获得积分10
29秒前
养猪人完成签到,获得积分10
30秒前
33秒前
charon完成签到,获得积分10
35秒前
瑾玉完成签到,获得积分10
36秒前
黑猫完成签到,获得积分10
36秒前
我思故我在完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779613
求助须知:如何正确求助?哪些是违规求助? 3325127
关于积分的说明 10221318
捐赠科研通 3040220
什么是DOI,文献DOI怎么找? 1668678
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535