亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An MRI Deep Learning Model Predicts Outcome in Rectal Cancer

医学 结直肠癌 结果(博弈论) 癌症 磁共振成像 放射科 内科学 肿瘤科 数理经济学 数学
作者
Xiaofeng Jiang,Hengyu Zhao,Oliver Lester Saldanha,Sven Nebelung,Christiane Kühl,Iakovos Amygdalos,Sven Arke Lang,Xiaojian Wu,Xiaochun Meng,Daniel Truhn,Jakob Nikolas Kather,Jia Ke
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:48
标识
DOI:10.1148/radiol.222223
摘要

Background Deep learning (DL) models can potentially improve prognostication of rectal cancer but have not been systematically assessed. Purpose To develop and validate an MRI DL model for predicting survival in patients with rectal cancer based on segmented tumor volumes from pretreatment T2-weighted MRI scans. Materials and Methods DL models were trained and validated on retrospectively collected MRI scans of patients with rectal cancer diagnosed between August 2003 and April 2021 at two centers. Patients were excluded from the study if there were concurrent malignant neoplasms, prior anticancer treatment, incomplete course of neoadjuvant therapy, or no radical surgery performed. The Harrell C-index was used to determine the best model, which was applied to internal and external test sets. Patients were stratified into high- and low-risk groups based on a fixed cutoff calculated in the training set. A multimodal model was also assessed, which used DL model-computed risk score and pretreatment carcinoembryonic antigen level as input. Results The training set included 507 patients (median age, 56 years [IQR, 46-64 years]; 355 men). In the validation set (n = 218; median age, 55 years [IQR, 47-63 years]; 144 men), the best algorithm reached a C-index of 0.82 for overall survival. The best model reached hazard ratios of 3.0 (95% CI: 1.0, 9.0) in the high-risk group in the internal test set (n = 112; median age, 60 years [IQR, 52-70 years]; 76 men) and 2.3 (95% CI: 1.0, 5.4) in the external test set (n = 58; median age, 57 years [IQR, 50-67 years]; 38 men). The multimodal model further improved the performance, with a C-index of 0.86 and 0.67 for the validation and external test set, respectively. Conclusion A DL model based on preoperative MRI was able to predict survival of patients with rectal cancer. The model could be used as a preoperative risk stratification tool. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Langs in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
58秒前
lanbing802发布了新的文献求助10
1分钟前
ding应助lanbing802采纳,获得10
1分钟前
1分钟前
郭郭9706发布了新的文献求助10
1分钟前
chiazy完成签到 ,获得积分10
1分钟前
善学以致用应助从容栾采纳,获得10
1分钟前
郭郭9706完成签到,获得积分20
2分钟前
Wu完成签到,获得积分20
2分钟前
Wu发布了新的文献求助10
2分钟前
JamesPei应助mili采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
情怀应助d00007采纳,获得10
4分钟前
mili发布了新的文献求助10
4分钟前
虚心完成签到 ,获得积分10
4分钟前
5分钟前
从容栾发布了新的文献求助10
5分钟前
Obliviate完成签到,获得积分10
5分钟前
Jasmine完成签到,获得积分10
6分钟前
he0570完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
wangyu1993777发布了新的文献求助10
7分钟前
lanbing802发布了新的文献求助10
7分钟前
小二郎应助lanbing802采纳,获得10
7分钟前
mili完成签到,获得积分20
7分钟前
7分钟前
wangyu1993777完成签到,获得积分20
7分钟前
7分钟前
J_W_发布了新的文献求助10
7分钟前
he0570发布了新的文献求助10
7分钟前
李爱国应助c123采纳,获得10
8分钟前
冬去春来完成签到 ,获得积分10
9分钟前
9分钟前
lanbing802发布了新的文献求助10
9分钟前
TINATINA完成签到,获得积分10
9分钟前
10分钟前
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782683
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234369
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994