Artificial Intelligence in Collagen‐based Biomaterials

作者
Zareen Akhter,Sujay Prabakar
出处
期刊:ChemistrySelect [Wiley]
卷期号:10 (41)
标识
DOI:10.1002/slct.202504704
摘要

Abstract Collagen, the most abundant structural protein in animals, is central to biomedical devices, cosmetics, nutraceuticals and regenerative materials. However, traditional approaches to collagen sourcing, extraction and functionalisation are time‐consuming, empirical and increasingly inadequate in meeting the growing demand for sustainable and high‐performance collagen‐based products. This review explores how artificial intelligence (AI) is transforming collagen research and development (R&D) by enabling predictive, adaptive and data‐driven decision‐making across the full value chain, from raw material selection and extraction optimisation to characterisation, peptide discovery, imaging and product design. The review synthesises over 160 studies and technical reports, offering an application focused overview of how machine learning, deep learning and data modelling are being used to: optimise enzymatic hydrolysis protocols; predict peptide functionality for food, cosmetic and pharmaceutical applications; classify collagen materials through spectroscopic and image‐based data; and design customised formulations using in silico tools. It highlights emerging uses of AI in second harmonic generation imaging for tissue diagnostics, patient‐specific scaffold modelling in biomedicine and AI‐integrated traceability systems that support regulatory compliance and ethical sourcing. In addition to outlining successful implementations, the review addresses current challenges including data scarcity, model interpretability, computational access and ethical concerns around AI‐generated bioactive. It further discusses future directions such as digital twins, multimodal learning and federated data frameworks that could enable real‐time simulation and personalised biomaterial design. Altogether, these developments mark a major change in how collagen is studied and used, highlighting the growing role of smart technologies, clear traceability and environmentally responsible approaches. They also show how essential it is for experts from different fields to work together and for strong digital systems to support progress in collagen research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lll发布了新的文献求助10
1秒前
liwen发布了新的文献求助10
2秒前
小巧的不悔完成签到 ,获得积分10
3秒前
3秒前
田様应助Re采纳,获得10
3秒前
手都杏仁完成签到,获得积分10
4秒前
tuzi2160完成签到,获得积分10
5秒前
6秒前
6秒前
orixero应助淡定的水彤采纳,获得10
6秒前
睡觉睡觉安安静静完成签到,获得积分10
7秒前
LiuMeng发布了新的文献求助10
8秒前
张世华发布了新的文献求助10
8秒前
8秒前
下雨不愁完成签到,获得积分10
8秒前
9秒前
酷波er应助hentsi采纳,获得10
10秒前
11秒前
顾矜应助Dave采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
哈哈哈发布了新的文献求助10
13秒前
科研通AI6应助向北采纳,获得10
13秒前
小李发布了新的文献求助10
14秒前
16秒前
Nanami24发布了新的文献求助10
17秒前
xuxuxu发布了新的文献求助10
17秒前
亚婷儿完成签到,获得积分10
18秒前
Gu发布了新的文献求助10
18秒前
18秒前
blackddl应助吴嘻嘻采纳,获得10
19秒前
19秒前
20秒前
隐形元绿完成签到 ,获得积分10
23秒前
lll完成签到,获得积分10
23秒前
魏佳旭完成签到,获得积分10
24秒前
田様应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
东方元语应助科研通管家采纳,获得20
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533159
求助须知:如何正确求助?哪些是违规求助? 4621584
关于积分的说明 14579174
捐赠科研通 4561639
什么是DOI,文献DOI怎么找? 2499444
邀请新用户注册赠送积分活动 1479295
关于科研通互助平台的介绍 1450504