Large-Scale Network Imputation and Prediction of Traffic Volume Based on Multi-Source Data Collection System

计算机科学 数据挖掘 插补(统计学) 缺少数据 数据收集 实时计算 机器学习 统计 数学
作者
Donghyun Kwon,Changhee Lee,Heechan Kang,Lee-Hyung Kim
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (9): 30-42 被引量:3
标识
DOI:10.1177/03611981231158324
摘要

Although newly developed traffic detectors were actively deployed to improve the accuracy and coverage of collecting city-wise traffic state information, the rapid transition of the traffic management system caused the problems of massive data corruption. For the practical application of recovering the missing values, the deep learning-based imputation technique is used, which relies on prediction performance with the consideration of dynamic spatial and temporal characteristics in the traffic state information. However, the existing method requires an assumption that the given data comprise a complete dataset from a single source based on the experiments evaluated on a small scale or long stream of freeways. In this paper, we propose a multi-variable spatio-temporal learning technique based on multi-source traffic state information, which was realized by adopting Attention-based Spatial–Temporal Graph Convolutional Networks (ASTGCN). The proposed imputation method cooperatively aggregates spatial and temporal correlation from two different types of detectors into an integrated framework, which allows us to predict missing volume regardless of the missing rate. Moreover, the study was conducted on a large-scale network that contains the entire road characteristics. Daejeon city has served as a case study to demonstrate the performance, and the results show that the mean absolute error of the proposed method is under 12 vehicles/5 min. Our work indicates that multi-source traffic state information can be utilized to impute city-wide missing traffic volume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助温暖的蚂蚁采纳,获得10
刚刚
1秒前
FashionBoy应助归去来兮辞采纳,获得10
2秒前
光亮的笑槐完成签到 ,获得积分10
2秒前
cc发布了新的文献求助10
3秒前
tt完成签到 ,获得积分10
3秒前
传奇3应助智智采纳,获得10
4秒前
4秒前
wdd完成签到 ,获得积分10
4秒前
berry完成签到,获得积分10
6秒前
思源应助喵喵采纳,获得10
7秒前
8秒前
敏感的寒烟应助斯文静竹采纳,获得10
8秒前
汉堡包应助霍三石采纳,获得10
9秒前
科研通AI2S应助xw采纳,获得10
9秒前
未来之星发布了新的文献求助10
11秒前
hoongyan完成签到 ,获得积分10
11秒前
12秒前
科研通AI5应助苹果新儿采纳,获得30
13秒前
lzzzzz完成签到,获得积分10
13秒前
aaa完成签到,获得积分10
13秒前
m李完成签到,获得积分10
14秒前
wwwstt发布了新的文献求助10
15秒前
16秒前
田里一把叉完成签到,获得积分10
17秒前
17秒前
17秒前
大力的飞莲完成签到,获得积分10
17秒前
dandna完成签到 ,获得积分10
18秒前
科研助手6应助顺心觅松采纳,获得50
19秒前
墨橙完成签到,获得积分10
20秒前
20秒前
有星星的小路完成签到,获得积分10
20秒前
蔺山河发布了新的文献求助10
21秒前
怕黑笑蓝完成签到,获得积分10
21秒前
woobinhua完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
24秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816874
求助须知:如何正确求助?哪些是违规求助? 3360257
关于积分的说明 10407382
捐赠科研通 3078228
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767924