Lymphatic Contrast-enhanced US to Improve the Diagnosis of Cervical Lymph Node Metastasis from Thyroid Cancer

医学 甲状腺癌 放射科 淋巴结 活检 甲状腺 核医学 内科学
作者
Yan Zhang,Yuanyuan Lu,Wen Li,Jiahang Zhao,Ying Zhang,Hongying He,Jie Li,Yukun Luo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (4) 被引量:9
标识
DOI:10.1148/radiol.221265
摘要

Background The presence of cervical lymph node (LN) metastases (LNMs) affects clinical staging and prognosis of thyroid cancer, but the role of conventional B-mode US is limited for preoperative diagnosis of LNMs. The diagnostic value of lymphatic contrast-enhanced US (LCEUS) in thyroid cancer is still being explored. Purpose To explore the diagnostic performance of LCEUS by means of thyroidal injection of contrast agent in comparison with US in detecting LNMs of suspected thyroid cancer. Materials and Methods In this single-center prospective study conducted from November 2020 to January 2021, consecutive participants with suspected thyroid cancer underwent B-mode US and LCEUS of cervical LNs before biopsy. LNMs were confirmed with fine-needle aspiration cytologic examination, thyroglobulin washout assessment, or histopathologic examination after surgery. The diagnostic performance of LCEUS for cervical LNs was compared with that of conventional B-mode US, and its association with LN size and location was evaluated. Results The final data set included 64 participants (mean age, 45 years ± 12 [SD]; 52 women) with 76 LNs. The sensitivity, specificity, and accuracy of LCEUS for LNM were 97%, 90%, and 93%, respectively, whereas they were 81%, 80%, and 80%, respectively, for LNM at conventional B-mode US. Compared with US, LCEUS had better diagnostic accuracy for the LNs smaller than 1 cm (82% vs 95%; P = .03) and for central neck LNs (level VI) (83% vs 96%; P = .04). Conclusion Lymphatic contrast-enhanced US had better diagnostic performance than conventional B-mode US for detecting cervical LN metastases in suspected thyroid cancer before surgery, especially for LNs smaller than 1 cm and central neck LNs. © RSNA, 2023 See also the editorial by Grant and Kwon in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇气的逊完成签到,获得积分20
1秒前
JamesPei应助疯狂的依霜采纳,获得10
1秒前
1秒前
seven完成签到,获得积分10
1秒前
乐观小之应助韩凡采纳,获得10
2秒前
乌梅丸完成签到,获得积分10
3秒前
3秒前
gyy发布了新的文献求助10
3秒前
5秒前
娇气的逊发布了新的文献求助30
5秒前
小玉应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
一一应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
一一应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
浅尝离白完成签到,获得积分0
7秒前
seven发布了新的文献求助10
7秒前
7秒前
Kirito应助吴未采纳,获得10
10秒前
mengli完成签到 ,获得积分10
11秒前
大气乐儿发布了新的文献求助10
11秒前
12秒前
言言右发布了新的文献求助10
13秒前
清茶旧友完成签到,获得积分10
15秒前
16秒前
17秒前
小蘑菇应助ooo娜采纳,获得10
18秒前
20秒前
Erislastem发布了新的文献求助10
21秒前
22秒前
22秒前
安详夏彤发布了新的文献求助10
25秒前
jijibao发布了新的文献求助10
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836319
求助须知:如何正确求助?哪些是违规求助? 3378629
关于积分的说明 10505444
捐赠科研通 3098281
什么是DOI,文献DOI怎么找? 1706409
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772413