A photovoltaic surface defect detection method for building based on deep learning

光伏系统 计算机科学 可靠性(半导体) 推论 光伏 人工智能 深度学习 可再生能源 可靠性工程 工程类 电气工程 功率(物理) 物理 量子力学
作者
Yukang Cao,Dandan Pang,Yi Yan,Yongqing Jiang,Chongyi Tian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:70: 106375-106375 被引量:48
标识
DOI:10.1016/j.jobe.2023.106375
摘要

The inspection and diagnosis of building engineering involve health monitoring of buildings and related facilities, and the utilization of renewable energy, such as solar energy, is crucial for smooth operation of modern construction projects. The detection of solar panel defects is related to the reliability and efficiency of building photovoltaics and has become a field of concern. Using deep learning to detect defects can improve the stability of building photovoltaics. However, achieving a balance between algorithm accuracy and reasoning speed requires further study. This paper presents an improved algorithm based on YOLO-v5, named YOLOv5s-GBC, which improves accuracy and inference speed. This demonstrates the advantages of fast and accurate photovoltaic defect detection. Based on the classical YOLO-v5 algorithm, the attention mechanism and bidirectional feature pyramid network were adopted to improve the accuracy of defect detection. Then, the lightweight module GhostConv and the Gaussian error linear unit activation function were used to reduce the number of model parameters and improve the reasoning speed. Further, the defect dataset of electroluminescence images proposed by the 35th European Photovoltaic Solar Energy Conference and Exhibition was used to verify the effectiveness of the proposed method. The experimental results show that YOLOv5s-GBC is superior to the original method in many evaluation indices, i.e., the accuracy and inference speed were increased by 2% and 20.3%, respectively. In conclusion, YOLOv5s-GBC exhibited better performance compared to other deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
1秒前
Omni发布了新的文献求助10
1秒前
1秒前
Xman完成签到,获得积分10
2秒前
2秒前
褚香旋发布了新的文献求助10
2秒前
2秒前
雪松发布了新的文献求助10
3秒前
4秒前
王十二发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
二雷子发布了新的文献求助30
4秒前
5秒前
香蕉觅云应助emmaguo713采纳,获得10
5秒前
5秒前
wendie完成签到,获得积分10
6秒前
6秒前
奥里给发布了新的文献求助10
6秒前
风收奇绩发布了新的文献求助10
6秒前
孟雯毓完成签到,获得积分10
6秒前
李响完成签到,获得积分20
7秒前
7秒前
7秒前
晴天娃娃关注了科研通微信公众号
7秒前
111完成签到,获得积分10
8秒前
研友_VZG7GZ应助lj采纳,获得10
8秒前
dddd发布了新的文献求助10
8秒前
9秒前
鲸鱼发布了新的文献求助10
10秒前
chenchen发布了新的文献求助30
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
Echo完成签到,获得积分10
10秒前
OhoOu发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
Orange应助having采纳,获得30
11秒前
12秒前
绵绵面面喵呜酱完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482