LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer

计算机科学 肝癌 癌症 人工智能 医学物理学 医学 内科学
作者
Ya Li,Xuecong Zheng,Jiaping Li,Qingyun Dai,Chang‐Dong Wang,Min Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3478809
摘要

Clinical staging of liver cancer (CSoLC), an important indicator for evaluating the degree of deterioration of primary liver cancer cells (PLCCs), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on the patient's radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: The symptoms of liver cancer in the early- or mid-stage are not obvious, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains a large amount of domain knowledge, and the conventional methods can exacerbate out-of-vocabulary, which greatly affects the accuracy of classification. 3) Free-text and lengthy report: The radiology report of liver cancer sparsely describes various lesions with domain-specific terms, which poses difficulties in mining key information related to staging. To tackle these challenges, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, unlabeled radiology corpus of liver cancer are pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features, which can provide professional guidance for the classifier to focus on the important information. Compared with the baseline models, the classification accuracy of LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall. The code is available at https://github.com/xczhh/Supplemental-Material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到 ,获得积分10
刚刚
2秒前
别的人有完成签到,获得积分10
2秒前
许愿完成签到 ,获得积分10
3秒前
汉中太守魏延完成签到,获得积分10
3秒前
wx发布了新的文献求助10
3秒前
control完成签到,获得积分10
4秒前
4秒前
闪闪怀柔完成签到,获得积分10
4秒前
5秒前
第三宇宙速度完成签到 ,获得积分10
5秒前
唐唐完成签到 ,获得积分10
6秒前
6秒前
7秒前
Giroro_roro发布了新的文献求助10
8秒前
8秒前
朴素涵柏完成签到,获得积分10
8秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
8秒前
9秒前
Hancock完成签到 ,获得积分10
9秒前
10秒前
时尚的冰棍儿完成签到 ,获得积分10
10秒前
10秒前
kitty123完成签到,获得积分10
10秒前
哈哈完成签到,获得积分10
11秒前
鳗鱼灵寒完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
明志完成签到,获得积分10
13秒前
体贴的曼凝完成签到,获得积分10
13秒前
13秒前
知了完成签到,获得积分10
14秒前
清爽鸡翅发布了新的文献求助10
14秒前
14秒前
兴奋的谷兰完成签到,获得积分10
14秒前
玉米豆发布了新的文献求助10
15秒前
杨海菡发布了新的文献求助10
15秒前
可耐的Gamma完成签到,获得积分10
15秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Model Predictive Control-Based Lateral Control of Autonomous Large-Size Bus on Road with Large Curvature 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173