Artificial intelligence with mass spectrometry-based multimodal molecular profiling methods for advancing therapeutic discovery of infectious diseases

仿形(计算机编程) 计算生物学 质谱法 生物 化学 计算机科学 色谱法 操作系统
作者
Jingjing Liu,Chaohui Bao,Jiaxin Zhang,Ze‐Guang Han,Hai Fang,Haitao Lu
出处
期刊:Pharmacology & Therapeutics [Elsevier BV]
卷期号:: 108712-108712
标识
DOI:10.1016/j.pharmthera.2024.108712
摘要

Infectious diseases, driven by a diverse array of pathogens, can swiftly undermine public health systems. Accurate diagnosis and treatment of infectious diseases-centered around the identification of biomarkers and the elucidation of disease mechanisms-are in dire need of more versatile and practical analytical approaches. Mass spectrometry (MS)-based molecular profiling methods can deliver a wealth of information on a range of functional molecules, including nucleic acids, proteins, and metabolites. While MS-driven omics analyses can yield vast datasets, the sheer complexity and multi-dimensionality of MS data can significantly hinder the identification and characterization of functional molecules within specific biological processes and events. Artificial intelligence (AI) emerges as a potent complementary tool that can substantially enhance the processing and interpretation of MS data. AI applications in this context lead to the reduction of spurious signals, the improvement of precision, the creation of standardized analytical frameworks, and the increase of data integration efficiency. This critical review emphasizes the pivotal roles of MS based omics strategies in the discovery of biomarkers and the clarification of infectious diseases. Additionally, the review underscores the transformative ability of AI techniques to enhance the utility of MS-based molecular profiling in the field of infectious diseases by refining the quality and practicality of data produced from omics analyses. In conclusion, we advocate for a forward-looking strategy that integrates AI with MS-based molecular profiling. This integration aims to transform the analytical landscape and the performance of biological molecule characterization, potentially down to the single-cell level. Such advancements are anticipated to propel the development of AI-driven predictive models, thus improving the monitoring of diagnostics and therapeutic discovery for the ongoing challenge related to infectious diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哲000完成签到 ,获得积分10
刚刚
haochi发布了新的文献求助10
1秒前
LaiC发布了新的文献求助10
1秒前
Cindy发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
悦耳如柏发布了新的文献求助20
4秒前
thchiang完成签到 ,获得积分10
4秒前
蓝胖子完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
Marlowe完成签到,获得积分10
5秒前
pluto应助林甜甜很甜采纳,获得50
5秒前
CY完成签到,获得积分10
5秒前
七羽完成签到 ,获得积分10
5秒前
行舟完成签到 ,获得积分10
5秒前
wear88发布了新的文献求助10
6秒前
SYLH应助成就小懒虫采纳,获得10
6秒前
West Zhou发布了新的文献求助10
6秒前
Ccc完成签到,获得积分10
7秒前
酷波er应助xie采纳,获得10
7秒前
SYLH应助wwss采纳,获得10
8秒前
传奇3应助离谱的月亮采纳,获得10
8秒前
SSS完成签到,获得积分10
8秒前
CY发布了新的文献求助10
8秒前
程雯慧发布了新的文献求助10
9秒前
9秒前
9秒前
Owen应助科学家采纳,获得10
9秒前
赘婿应助程程采纳,获得10
9秒前
9秒前
充电宝应助炙热灰狼采纳,获得10
10秒前
yayika发布了新的文献求助10
10秒前
wear88完成签到,获得积分10
13秒前
梨老师完成签到,获得积分10
13秒前
俭朴新之完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868