Development and validation of an explainable machine learning model for predicting multidimensional frailty in hospitalized patients with cirrhosis

概化理论 接收机工作特性 医学 机器学习 人工智能 肝硬化 腹水 计算机科学 随机森林 内科学 统计 数学
作者
Fang Yang,Chaoqun Li,Wanting Yang,Yumei He,Liping Wu,Kui Jiang,Chao Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6) 被引量:6
标识
DOI:10.1093/bib/bbae491
摘要

Abstract We sought to develop and validate a machine learning (ML) model for predicting multidimensional frailty based on clinical and laboratory data. Moreover, an explainable ML model utilizing SHapley Additive exPlanations (SHAP) was constructed. This study enrolled 622 patients hospitalized due to decompensating episodes at a tertiary hospital. The cohort data were randomly divided into training and test sets. External validation was carried out using 131 patients from other tertiary hospitals. The frail phenotype was defined according to a self-reported questionnaire (Frailty Index). The area under the receiver operating characteristics curve was adopted to compare the performance of five ML models. The importance of the features and interpretation of the ML models were determined using the SHAP method. The proportions of cirrhotic patients with nonfrail and frail phenotypes in combined training and test sets were 87.8% and 12.2%, respectively, while they were 88.5% and 11.5% in the external validation dataset. Five ML algorithms were used, and the random forest (RF) model exhibited substantially predictive performance. Regarding the external validation, the RF algorithm outperformed other ML models. Moreover, the SHAP method demonstrated that neutrophil-to-lymphocyte ratio, age, lymphocyte-to-monocyte ratio, ascites, and albumin served as the most important predictors for frailty. At the patient level, the SHAP force plot and decision plot exhibited a clinically meaningful explanation of the RF algorithm. We constructed an ML model (RF) providing accurate prediction of frail phenotype in decompensated cirrhosis. The explainability and generalizability may foster clinicians to understand contributors to this physiologically vulnerable situation and tailor interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yet_S完成签到,获得积分10
1秒前
快乐的柚子完成签到,获得积分10
1秒前
硕shuo发布了新的文献求助10
2秒前
pluto应助宋浩奇采纳,获得10
2秒前
隔壁小王完成签到,获得积分10
2秒前
jiayou发布了新的文献求助10
3秒前
3秒前
4秒前
魁梧的太清完成签到 ,获得积分10
4秒前
4秒前
孙伟健完成签到,获得积分10
4秒前
dzzza完成签到,获得积分10
4秒前
yxl关闭了yxl文献求助
4秒前
星星不说话完成签到,获得积分10
6秒前
7秒前
天天快乐应助YAXIN采纳,获得10
7秒前
8秒前
9秒前
cy发布了新的文献求助30
9秒前
平常的无心完成签到,获得积分10
9秒前
hannahguo完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
咹咹发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
FashionBoy应助实验耗材采纳,获得30
12秒前
念梦发布了新的文献求助10
13秒前
13秒前
科研通AI6应助lixm采纳,获得10
14秒前
李奚发布了新的文献求助10
14秒前
15秒前
15秒前
Lucy发布了新的文献求助10
15秒前
今后应助csl采纳,获得10
17秒前
17秒前
YAXIN发布了新的文献求助10
18秒前
Waiting完成签到,获得积分10
18秒前
小胡爱学习完成签到,获得积分10
18秒前
QT发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600873
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843882
捐赠科研通 4678720
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241