Development and validation of an explainable machine learning model for predicting multidimensional frailty in hospitalized patients with cirrhosis

概化理论 接收机工作特性 医学 机器学习 人工智能 肝硬化 腹水 计算机科学 随机森林 内科学 统计 数学
作者
Fang Yang,Chaoqun Li,Wanting Yang,Yumei He,Liping Wu,Kui Jiang,Chao Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae491
摘要

Abstract We sought to develop and validate a machine learning (ML) model for predicting multidimensional frailty based on clinical and laboratory data. Moreover, an explainable ML model utilizing SHapley Additive exPlanations (SHAP) was constructed. This study enrolled 622 patients hospitalized due to decompensating episodes at a tertiary hospital. The cohort data were randomly divided into training and test sets. External validation was carried out using 131 patients from other tertiary hospitals. The frail phenotype was defined according to a self-reported questionnaire (Frailty Index). The area under the receiver operating characteristics curve was adopted to compare the performance of five ML models. The importance of the features and interpretation of the ML models were determined using the SHAP method. The proportions of cirrhotic patients with nonfrail and frail phenotypes in combined training and test sets were 87.8% and 12.2%, respectively, while they were 88.5% and 11.5% in the external validation dataset. Five ML algorithms were used, and the random forest (RF) model exhibited substantially predictive performance. Regarding the external validation, the RF algorithm outperformed other ML models. Moreover, the SHAP method demonstrated that neutrophil-to-lymphocyte ratio, age, lymphocyte-to-monocyte ratio, ascites, and albumin served as the most important predictors for frailty. At the patient level, the SHAP force plot and decision plot exhibited a clinically meaningful explanation of the RF algorithm. We constructed an ML model (RF) providing accurate prediction of frail phenotype in decompensated cirrhosis. The explainability and generalizability may foster clinicians to understand contributors to this physiologically vulnerable situation and tailor interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈陈陈介意完成签到 ,获得积分10
1秒前
cdercder应助wise111采纳,获得10
2秒前
guozizi发布了新的文献求助30
2秒前
3秒前
着急的觅荷完成签到,获得积分10
4秒前
4秒前
lalala123完成签到,获得积分20
4秒前
4秒前
SciGPT应助研友_8QyXr8采纳,获得10
5秒前
6秒前
6秒前
6秒前
陈隆完成签到,获得积分10
7秒前
lwei发布了新的文献求助10
8秒前
OxO完成签到,获得积分10
8秒前
顾矜应助祯果粒采纳,获得10
9秒前
lalala123发布了新的文献求助10
9秒前
secret完成签到,获得积分10
10秒前
隐形曼青应助LSR采纳,获得10
11秒前
11秒前
12秒前
7123发布了新的文献求助10
12秒前
受伤冰菱发布了新的文献求助30
14秒前
路寻完成签到,获得积分10
14秒前
Hey发布了新的文献求助20
15秒前
从容芮应助陈一昂采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
果子应助CY03采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
文献通发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462