亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Refinement of an Artificial Intelligence Algorithm for Enhanced Burn Wound Depth Assessment Using Multispectral Imaging: An Expanded Proof of Concept Study

医学 卷积神经网络 多光谱图像 算法 基本事实 人工智能 像素 深度学习 协变量 烧伤 概念证明 机器学习 外科 计算机科学 伤口愈合 操作系统
作者
Jeffrey E Carter,Jeffrey W. Shupp,Herb A. Phelan,William L. Hickerson,Clay J. Cockerell,J. Michael DiMaio,James H. Holmes
出处
期刊:Journal of Burn Care & Research [Oxford University Press]
标识
DOI:10.1093/jbcr/iraf057
摘要

Abstract Background With the advent of Convolutional Neural Networks (CNNs), artificial intelligence is now applicable to visual fields. We used multispectral imaging (MSI) sensors capable of detecting wavelengths outside visible spectra to image burn wounds. The output was converted to pixel-level data and analyzed by an array of CNNs to inform development of a Deep Learning (DL) algorithm for burn assessment. Methods Three burn centers prospectively grouped consenting subjects into those with wounds likely to heal nonoperatively by 21 days, or those benefiting from surgery. Both groups underwent MSI sensor imaging at enrollment and once daily until discharge/excision. Nonoperative subjects were evaluated at 21 days, while operative subjects underwent biopsies. A “Truthing Panel” of burn experts created a “ground truth” for each wound that was converted to pixel-level data and used to train ten CNNs (eight unique DL algorithms and two ensemble DL algorithms). Results 1037 MSI images and 161 biopsies were collected from 100 adult and 24 pediatric subjects. The most effective CNN algorithm exhibited an Area Under the Curve of 0.95 (accuracy= 89.29%, sensitivity= 90.51%, specificity= 87.22%) with the covariate “time-since-injury” found to be significant (p < 0.0001). Accuracy was lowest, 88.5%, at 1 – 2 days after injury and highest, 93.5%, at 3 – 4 days. The CNN’s learning curve predicted an accuracy of 94.04% after enrolling 374 subjects in a future training study. Conclusions An optimal CNN architecture and the importance of “time-since-injury” as a covariate were identified, informing the design/powering of upcoming algorithm Training and Validation Studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李浩完成签到 ,获得积分10
2秒前
龚文亮完成签到,获得积分10
14秒前
19秒前
21秒前
Otter发布了新的文献求助10
27秒前
天下无马完成签到 ,获得积分10
40秒前
Echopotter完成签到,获得积分10
46秒前
Sandy发布了新的文献求助10
47秒前
49秒前
武玉坤完成签到,获得积分10
55秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
852应助youyou采纳,获得30
1分钟前
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
fxh发布了新的文献求助10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
xiaoyi发布了新的文献求助10
3分钟前
xiaoyi完成签到,获得积分10
3分钟前
3分钟前
3分钟前
youyou发布了新的文献求助30
3分钟前
k001boyxw完成签到,获得积分10
4分钟前
4分钟前
思源应助张寒采纳,获得10
5分钟前
5分钟前
Lignin应助fxh采纳,获得10
5分钟前
张寒发布了新的文献求助10
5分钟前
Lignin应助张寒采纳,获得20
5分钟前
5分钟前
xxyqddx完成签到,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
酷炫的咖啡豆给Nakacoke77的求助进行了留言
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924372
求助须知:如何正确求助?哪些是违规求助? 3469104
关于积分的说明 10955100
捐赠科研通 3198461
什么是DOI,文献DOI怎么找? 1767207
邀请新用户注册赠送积分活动 856696
科研通“疑难数据库(出版商)”最低求助积分说明 795597