亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Role of AI in Lymphoma: An Update

医学 淋巴瘤 医学物理学 病理
作者
James Cairns,Russell Frood,Chirag Patel,Andrew Scarsbrook
出处
期刊:Seminars in Nuclear Medicine [Elsevier]
被引量:2
标识
DOI:10.1053/j.semnuclmed.2025.02.007
摘要

Malignant lymphomas encompass a range of malignancies with incidence rising globally, particularly with age. In younger populations, Hodgkin and Burkitt lymphomas predominate, while older populations more commonly experience subtypes such as diffuse large B-cell, follicular, marginal zone, and mantle cell lymphomas. Positron emission tomography/computed tomography (PET/CT) using [18F] fluorodeoxyglucose (FDG) is the gold standard for staging, treatment response assessment, and prognostication in lymphoma. However, interpretation of PET/CT is complex, time-consuming, and reliant on expert imaging specialists, exacerbating challenges associated with workforce shortages worldwide. Artificial intelligence (AI) offers transformative potential across multiple aspects of PET/CT imaging in this setting. AI applications in appointment planning have demonstrated utility in reducing nonattendance rates and improving departmental efficiency. Advanced reconstruction techniques leveraging convolutional neural networks (CNNs) enable reduced injected activities of radiopharmaceutical and patient dose whilst maintaining diagnostic accuracy, particularly benefiting younger patients requiring multiple scans. Automated segmentation tools, predominantly using 3D U-Net architectures, have improved quantification of metrics such as total metabolic tumour volume (TMTV) and total lesion glycolysis (TLG), facilitating prognostication and treatment stratification. Despite these advancements, challenges remain, including variability in segmentation performance, impact on Deauville Score interpretation, and standardization of TMTV/TLG measurements. Emerging large language models (LLMs) also show promise in enhancing PET/CT reporting, converting free-text reports into structured formats, and improving patient communication. Further research is required to address limitations such as AI-induced errors, physiological uptake differentiation, and the integration of AI models into clinical workflows. With robust validation and harmonization, AI integration could significantly enhance lymphoma care, improving diagnostic precision, workflow efficiency, and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
diaoyulao完成签到,获得积分10
2秒前
麻辣小龙虾完成签到,获得积分10
6秒前
DChen完成签到 ,获得积分10
6秒前
11秒前
俭朴涫发布了新的文献求助10
15秒前
Bienk完成签到,获得积分10
20秒前
YYL完成签到 ,获得积分10
29秒前
Wu完成签到,获得积分10
30秒前
31秒前
36秒前
王威发布了新的文献求助80
38秒前
38秒前
查不到我就吃饭完成签到 ,获得积分10
40秒前
42秒前
42秒前
旺仔先生完成签到 ,获得积分10
42秒前
汤米bb发布了新的文献求助10
43秒前
43秒前
shaun发布了新的文献求助10
45秒前
SDNUDRUG完成签到,获得积分10
46秒前
crane完成签到,获得积分10
48秒前
辞却发布了新的文献求助10
49秒前
Jasper应助迷人问兰采纳,获得10
56秒前
shaun完成签到,获得积分10
56秒前
Frank完成签到 ,获得积分10
57秒前
搜集达人应助汤米bb采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
xtheuv完成签到,获得积分10
1分钟前
绿柏发布了新的文献求助10
1分钟前
1分钟前
xtheuv发布了新的文献求助10
1分钟前
安年完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
小白完成签到 ,获得积分10
1分钟前
花陵发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469900
求助须知:如何正确求助?哪些是违规求助? 4572919
关于积分的说明 14337640
捐赠科研通 4499821
什么是DOI,文献DOI怎么找? 2465323
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270