亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Empirical Mode Decomposition and Grassmann Manifold‐Based Cervical Cancer Detection

随机森林 希尔伯特-黄变换 模式识别(心理学) 非线性降维 计算机科学 人工智能 降维 特征提取 特征选择 数学 计算机视觉 滤波器(信号处理)
作者
Sidharthenee Nayak,Bhaswati Singha Deo,Mayukha Pal,Prasanta K. Panigrahi,Asima Pradhan
出处
期刊:Journal of Biophotonics [Wiley]
标识
DOI:10.1002/jbio.202400584
摘要

ABSTRACT Cervical cancer is a prevalent malignancy affecting the female reproductive system and is recognized as a prominent factor to female mortality on a global scale. Timely and precise detection of various stages of cervical cancer plays a crucial role in enhancing the chances of successful treatment and extending patient survival. Fluorescence spectroscopy stands out as a highly sensitive method for identifying biochemical alterations associated with cancer and numerous other pathological conditions. In our study, empirical mode decomposition (EMD) and Grassmann manifold (GM) learning are explored for reliable cancer detection using fluorescence spectral signals collected from 110 subjects representing various categories of the human cervix. Initially, EMD is used to decompose the signal into several multi‐feature intrinsic mode functions (IMFs) on a spectral scale. Each IMF demonstrates uniqueness by capturing the inherent frequency characteristics within the signal, thus facilitating the extraction of signal features. The GM representation of IMFs is employed for investigating the non‐linear subspace structure within spectral signals, which is subsequently followed by a low‐rank representation to transform and analyze the spectral signals. The GM allows for the extraction of relevant information, reduction of dimensionality, and exploration of complex relationships within data, ultimately contributing to improved diagnosis. Mutual information is further used for feature selection to reduce the number of features and hence the computational cost. When the selected features were employed for classification, the Random Forest (RF) classifier attained a high five‐fold validation accuracy of 99% and exhibited a minimal standard deviation of 0.02. Other state‐of‐the‐art machine learning classifiers were also used and compared with the RF model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小叶子完成签到,获得积分10
8秒前
17秒前
celinewu完成签到,获得积分10
38秒前
1分钟前
鲁卓林发布了新的文献求助10
1分钟前
1分钟前
zq发布了新的文献求助10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
鲁卓林发布了新的文献求助10
2分钟前
2分钟前
JrPaleo101发布了新的文献求助100
2分钟前
鲁卓林完成签到,获得积分10
4分钟前
Dreamhappy完成签到,获得积分10
5分钟前
6分钟前
苏苏完成签到,获得积分10
6分钟前
7分钟前
spike发布了新的文献求助10
7分钟前
7分钟前
香蕉觅云应助Zq采纳,获得10
7分钟前
7分钟前
Zq发布了新的文献求助10
7分钟前
QCB完成签到 ,获得积分10
7分钟前
8分钟前
9分钟前
10分钟前
11分钟前
整齐白秋完成签到 ,获得积分10
11分钟前
nojmli完成签到,获得积分10
12分钟前
12分钟前
13分钟前
KINGAZX完成签到 ,获得积分10
14分钟前
14分钟前
15分钟前
滕皓轩完成签到 ,获得积分20
16分钟前
16分钟前
瞿寒完成签到,获得积分10
16分钟前
16分钟前
Hui发布了新的文献求助10
16分钟前
我是笨蛋完成签到 ,获得积分10
16分钟前
斯文败类应助Hui采纳,获得10
17分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4513864
求助须知:如何正确求助?哪些是违规求助? 3958883
关于积分的说明 12270768
捐赠科研通 3620604
什么是DOI,文献DOI怎么找? 1992495
邀请新用户注册赠送积分活动 1028805
科研通“疑难数据库(出版商)”最低求助积分说明 919895