A feasibility study of automating radiotherapy planning with large language model agents

工作流程 放射治疗计划 平面图(考古学) 放射治疗 医学物理学 计算机科学 近距离放射治疗 医学 放射科 历史 考古 数据库
作者
Qingxin Wang,Zhongqiu Wang,Minghua Li,Xinye Ni,Ruth Tan,Wenwen Zhang,Maitudi Wubulaishan,Wei Wang,Zhiyong Yuan,Zhen Zhang,Cong Liu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adbff1
摘要

Abstract Objective : Radiotherapy planning requires significant expertise to balance tumor control and organ-at-risk (OAR) sparing. Automated planning can improve both efficiency and quality. This study introduces GPT-Plan, a novel multi-agent system powered by the GPT-4 family of large language models (LLMs), for automating the iterative radiotherapy plan optimization. Approach : GPT-Plan uses LLM-driven agents, mimicking the collaborative clinical workflow of a dosimetrist and physicist, to iteratively generate and evaluate text-based radiotherapy plans based on predefined criteria. Supporting tools assist the agents by leveraging historical plans, mitigating LLM hallucinations, and balancing exploration and exploitation. Performance was evaluated on 12 lung (IMRT) and 5 cervical (VMAT) cancer cases, benchmarked against the ECHO auto-planning method and manual plans. The impact of historical plan retrieval on efficiency was also assessed. Results : For IMRT lung cancer cases, GPT-Plan generated high-quality plans, demonstrating superior target coverage and homogeneity compared to ECHO while maintaining comparable or better OAR sparing. For VMAT cervical cancer cases, plan quality was comparable to a senior physicist and consistently superior to a junior physicist, particularly for OAR sparing. Retrieving historical plans significantly reduced the number of required optimization iterations for lung cases (p < 0.01) and yielded iteration counts comparable to those of the senior physicist for cervical cases (p=0.313). Occasional LLM hallucinations have been mitigated by self-reflection mechanisms. One limitation was the inaccuracy of vision-based LLMs in interpreting dose images. Significance : This pioneering study demonstrates the feasibility of automating radiotherapy planning using LLM-powered agents for complex treatment decision-making tasks. While challenges remain in addressing LLM limitations, ongoing advancements hold potential for further refining and expanding GPT-Plan's capabilities.&#xD;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FengXisong发布了新的文献求助10
2秒前
CYY发布了新的文献求助10
2秒前
jellorio发布了新的文献求助10
2秒前
等待盼雁发布了新的文献求助10
5秒前
晓巨人完成签到,获得积分20
5秒前
终澈发布了新的文献求助10
6秒前
6秒前
万能图书馆应助roaring采纳,获得10
7秒前
辛勤又蓝完成签到 ,获得积分10
7秒前
英姑应助自觉大碗采纳,获得10
7秒前
8秒前
whisper完成签到,获得积分10
9秒前
科研通AI2S应助liuzengzhang666采纳,获得10
9秒前
研友_VZG7GZ应助103921wjk采纳,获得10
10秒前
ALY12345发布了新的文献求助10
10秒前
Mastertry完成签到,获得积分10
10秒前
科研通AI5应助jellorio采纳,获得10
11秒前
Landau发布了新的文献求助10
13秒前
dx完成签到,获得积分10
15秒前
16秒前
自觉大碗完成签到,获得积分10
17秒前
17秒前
Landau完成签到,获得积分10
18秒前
宁宁完成签到,获得积分20
20秒前
debu9完成签到,获得积分10
20秒前
21秒前
晓巨人发布了新的文献求助10
21秒前
103921wjk发布了新的文献求助10
21秒前
星辰大海应助cs采纳,获得10
21秒前
zzx完成签到,获得积分10
22秒前
24秒前
26秒前
27秒前
ltt完成签到,获得积分10
29秒前
MikyY发布了新的文献求助10
29秒前
roaring发布了新的文献求助10
31秒前
cs发布了新的文献求助10
32秒前
33秒前
所所应助elisa828采纳,获得10
33秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358