亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Advanced Machine Learning Models for Detection of Dyslexia Among Children By Parents: A Study from Screening to Diagnosis

诵读困难 心理学 逻辑回归 阅读(过程) 背景(考古学) 联想(心理学) 认知心理学 随机森林 发展心理学 人工智能 机器学习 计算机科学 语言学 古生物学 哲学 心理治疗师 生物
作者
Abdullah Alrubaian
出处
期刊:Assessment [SAGE]
卷期号:: 10731911251329992-10731911251329992 被引量:2
标识
DOI:10.1177/10731911251329992
摘要

Parents of children with dyslexia have an important role in the detection and treatment of success in their children. However, standard scales in this context are not suitable for use among parents. The main aim of the current study was to find the most important indicators of dyslexia according to parents’ reports and statements. First, a list of parent reports on dyslexia was developed. Then, according to the DSM-5 criteria (by clinicians), children were divided into two categories: children with dyslexia and healthy controls. Then, four Machine Learning (ML) algorithms—Logistic Regression, Random Forest, Extreme Gradient Boosting (XGBoost), and ensemble methods—were used to extract the most relevant predictors. To predict dyslexia, recursive feature elimination chose the five most important variables from 35 parent-reported items. Logistic Regression, Random Forest, XGBoost, and ensemble models were used in R-Studio. The ensemble model was the best. The most important were “Word Guessing,” “Letter Confusion,” “Letter–Sound Association,” “Slow Reading,” and “Letter Order Reversal.” The study revealed that ML models can accurately identify dyslexia by analyzing parent-reported indicators. The five key predictors “Word Guessing,” “Letter Confusion,” “Letter–Sound Association,” “Slow Reading,” and “Letter Order Reversal” provide essential information for detecting dyslexia early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助洞两采纳,获得10
3秒前
慕子完成签到 ,获得积分10
10秒前
14秒前
在水一方完成签到 ,获得积分10
17秒前
22秒前
24秒前
yuchangkun完成签到,获得积分10
26秒前
yuchangkun发布了新的文献求助10
29秒前
29秒前
Linden_bd完成签到 ,获得积分10
30秒前
鱼猫完成签到,获得积分20
33秒前
35秒前
无极微光应助yuchangkun采纳,获得20
35秒前
充电宝应助唐阳采纳,获得10
36秒前
丘比特应助wwww采纳,获得10
37秒前
洞两发布了新的文献求助10
39秒前
我是老大应助科研通管家采纳,获得10
47秒前
Huzhu应助科研通管家采纳,获得10
47秒前
58秒前
fuwei完成签到,获得积分10
58秒前
1分钟前
今天开心吗完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助虚拟的凡波采纳,获得10
1分钟前
1分钟前
1分钟前
浮游应助王威采纳,获得10
1分钟前
南寅完成签到,获得积分10
1分钟前
科研通AI6应助yinian采纳,获得30
1分钟前
1分钟前
chenyue233发布了新的文献求助10
1分钟前
1分钟前
唐阳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
wwww发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
27小天使完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488503
求助须知:如何正确求助?哪些是违规求助? 4587316
关于积分的说明 14413618
捐赠科研通 4518671
什么是DOI,文献DOI怎么找? 2475964
邀请新用户注册赠送积分活动 1461489
关于科研通互助平台的介绍 1434379