Picture-in-Picture Strategy-Based Complex Graph Neural Network for Remaining Useful Life Prediction of Rotating Machinery

计算机科学 图形 功率图分析 人工神经网络 人工智能 预言 理论计算机科学 拓扑图论 拓扑(电路) 算法 模式识别(心理学) 数据挖掘 电压图 数学 折线图 组合数学
作者
Yudong Cao,Jichao Zhuang,Minping Jia,Xiaoli Zhao,Xiaoan Yan,Zheng Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:8
标识
DOI:10.1109/tim.2023.3268456
摘要

Graph neural networks are increasingly explored in the field of Prognostics and Health Management (PHM) due to their excellent performance when dealing with non-Euclidean data. However, current graph neural networks are mostly based on real domain modeling. In addition, existing graph construction methods rely on the prior positional relationship of multiple sensors. In view of the above, this paper proposes complex graph neural network based on the picture-in-picture strategy (CGNN-PIP) to realize the remaining useful life (RUL) prediction of rotating machinery under multi-channel signals. Specifically, the classical graph convolution operation is upgraded to generalized complex graph convolution, and complex graph neural network is further constructed to extract deep degenerate feature representations. Meanwhile, the picture-in-picture strategy is designed to guide graph construction, which takes the single-path graph as a node of the new graph to build a deeper-level graph. We verified the effectiveness and superiority of the proposed method through two case studies on different run-to-failure datasets. The results show that the proposed CGCN-PIP can reasonably construct the topology map of the complex domain data, and extract the temporal and structural information reflecting the equipment degradation. The comparison with state-of-the-art methods also proves that CGCN-PIP has advantages in terms of prediction accuracy and training consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Roy完成签到,获得积分10
1秒前
2秒前
JamesPei应助Doyne采纳,获得10
3秒前
whl发布了新的文献求助10
4秒前
5秒前
5秒前
充电宝应助如意的冰双采纳,获得10
5秒前
6秒前
黄丽花完成签到,获得积分10
7秒前
幸福大白发布了新的文献求助10
7秒前
皮皮发布了新的文献求助10
8秒前
9秒前
9秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
9秒前
9秒前
任佳宇发布了新的文献求助10
9秒前
可爱的函函应助maxwell158采纳,获得10
10秒前
11秒前
科研通AI5应助晓晓采纳,获得10
11秒前
善学以致用应助机智剑通采纳,获得10
11秒前
13秒前
西升东落发布了新的文献求助10
13秒前
全球发布了新的文献求助10
13秒前
奔波霸发布了新的文献求助10
13秒前
orixero应助errui采纳,获得10
14秒前
爆米花应助zhishuanggaogao采纳,获得10
14秒前
pzh发布了新的文献求助10
15秒前
18秒前
18秒前
18秒前
Roy发布了新的文献求助10
19秒前
20秒前
21秒前
笨蛋研究生完成签到,获得积分10
21秒前
无辜梨愁完成签到 ,获得积分10
21秒前
22秒前
maxwell158发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4481538
求助须知:如何正确求助?哪些是违规求助? 3938019
关于积分的说明 12216600
捐赠科研通 3593036
什么是DOI,文献DOI怎么找? 1975997
邀请新用户注册赠送积分活动 1013148
科研通“疑难数据库(出版商)”最低求助积分说明 906316