脑-机接口
脑电图
概化理论
计算机科学
人工智能
神经康复
学习迁移
康复
模式识别(心理学)
神经科学
心理学
发展心理学
作者
Danyang Chen,Jian Shi,Bo Tao,Xingwei Zhao,Zhixian Zhao,Shengjie Li,Yeguang Xu,Tao Ding,Peng Zhang,Qing Ye,Kuiyou Chen,Zhuojin Wu,Yingxin Tang,Wei Jiang,Kai Shu,Li Huang,Zheng You,Ping Zhang,Zhouping Tang
标识
DOI:10.1002/advs.202505426
摘要
Abstract Motor imagery (MI)‐based neurorehabilitation shows promise for intracerebral hemorrhage (ICH) recovery, yet conventional unimodal brain‐computer interfaces (BCIs) face critical limitations in cross‐subject generalization. This study presents a multimodal electroencephalography (EEG)‐functional near‐infrared spectroscopy (fNIRS) fusion framework incorporating a Wasserstein metric‐driven source domain selection method that quantifies inter‐subject neural distribution divergence. Through comparative neuroactivation analysis of 17 normal controls and 13 ICH patients during MI tasks, the transfer learning model achieved 74.87% mean classification accuracy on patient data when trained with optimally selected normal templates. Cross‐validation on two public hybrid EEG‐fNIRS datasets demonstrated generalizability, increasing baseline accuracy to 82.30% and 87.24%, respectively. The proposed system synergistically combines the millisecond temporal resolution of EEG with the hemodynamic spatial specificity of fNIRS, establishing the first clinically viable multimodal analytical protocol for ICH rehabilitation. This paradigm advances neurotechnology translation by paving the way for personalized rehabilitation regimens through robust cross‐subject neural pattern transfer while addressing the critical barrier of neurophysiological heterogeneity in post‐ICH populations.
科研通智能强力驱动
Strongly Powered by AbleSci AI