材料科学
分离器(采油)
分子
化学工程
小分子
超级电容器
阳极
纳米技术
电极
有机化学
电化学
化学
物理化学
生物化学
热力学
物理
工程类
作者
Rui Li,Mingsheng Yang,Huige Ma,Xinyu Wang,Haiping Yu,Mengxiao Li,Zhihui Wang,Liping Zheng,Hongwei Li,Yuxin Hao,Mingjun Hu,Jun Yang
标识
DOI:10.1002/adma.202403489
摘要
Abstract Rechargeable aqueous proton batteries with small organic molecule anodes are currently considered promising candidates for large‐scale energy storage due to their low cost, stable safety, and environmental friendliness. However, the practical application is limited by the poor cycling stability caused by the shuttling of soluble organic molecules between electrodes. Herein, a cell separator is modified by a GO‐casein‐Cu 2+ layer with a brick‐and‐mortar structure to inhibit the shuttling of small organic molecules. Experimental and calculation results indicate that, attributed to the synergistic effect of physical blocking of casein molecular chains and electrostatic and coordination interactions of Cu 2+ , bulk dissolution and shuttling of multiple small molecules can be inhibited simultaneously, while H + transfer across the separators is not almost affected. With the protection of the GO‐casein‐Cu 2+ separator, soluble small molecules, such as diquinoxalino[2,3‐a:2',3'‐c]phenazine,2,3,8,9,14,15‐hexacyano (6CN‐DQPZ) exhibit a high reversible capacity of 262.6 mA h g −1 and amazing stability (capacity retention of 92.9% after 1000 cycles at 1 A g −1 ). In addition, this strategy is also proved available to other active conjugated small molecules, such as indanthrone (IDT), providing a general green sustainable strategy for advancing the use of small organic molecule electrodes in proton cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI