Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee

关节炎 医学 渗出 放射科 射线照相术 减法 核医学 外科 算术 数学
作者
Israel Cohen,Vera Sorin,Ruth Lekach,Daniel Raskin,Maria Segev,Eyal Klang,Iris Eshed,Yiftach Barash
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:175: 111460-111460 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111460
摘要

Traumatic knee injuries are challenging to diagnose accurately through radiography and to a lesser extent, through CT, with fractures sometimes overlooked. Ancillary signs like joint effusion or lipo-hemarthrosis are indicative of fractures, suggesting the need for further imaging. Artificial Intelligence (AI) can automate image analysis, improving diagnostic accuracy and help prioritizing clinically important X-ray or CT studies.To develop and evaluate an AI algorithm for detecting effusion of any kind in knee X-rays and selected CT images and distinguishing between simple effusion and lipo-hemarthrosis indicative of intra-articular fractures.This retrospective study analyzed post traumatic knee imaging from January 2016 to February 2023, categorizing images into lipo-hemarthrosis, simple effusion, or normal. It utilized the FishNet-150 algorithm for image classification, with class activation maps highlighting decision-influential regions. The AI's diagnostic accuracy was validated against a gold standard, based on the evaluations made by a radiologist with at least four years of experience.Analysis included CT images from 515 patients and X-rays from 637 post traumatic patients, identifying lipo-hemarthrosis, simple effusion, and normal findings. The AI showed an AUC of 0.81 for detecting any effusion, 0.78 for simple effusion, and 0.83 for lipo-hemarthrosis in X-rays; and 0.89, 0.89, and 0.91, respectively, in CTs.The AI algorithm effectively detects knee effusion and differentiates between simple effusion and lipo-hemarthrosis in post-traumatic patients for both X-rays and selected CT images further studies are needed to validate these results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jamie完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
爆米花应助222采纳,获得10
7秒前
乔木的养发布了新的文献求助10
7秒前
王军鹏发布了新的文献求助10
8秒前
开放的秋玲完成签到,获得积分10
9秒前
Hello应助nanigulai采纳,获得10
9秒前
仁和完成签到,获得积分10
11秒前
李荣航发布了新的文献求助10
13秒前
Allure完成签到,获得积分10
13秒前
14秒前
C7_关注了科研通微信公众号
15秒前
17秒前
17秒前
合适的荆完成签到,获得积分10
18秒前
小奥雄发布了新的文献求助10
18秒前
Owen应助王军鹏采纳,获得10
18秒前
19秒前
zh123完成签到,获得积分10
20秒前
20秒前
柒玥完成签到,获得积分10
21秒前
21秒前
温暖发布了新的文献求助10
23秒前
222发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
小奥雄完成签到,获得积分10
27秒前
科研通AI5应助沐晴采纳,获得10
27秒前
Allure发布了新的文献求助10
27秒前
27秒前
xjp发布了新的文献求助10
28秒前
29秒前
29秒前
31秒前
温暖完成签到,获得积分20
31秒前
31秒前
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806853
求助须知:如何正确求助?哪些是违规求助? 3351618
关于积分的说明 10354910
捐赠科研通 3067447
什么是DOI,文献DOI怎么找? 1684519
邀请新用户注册赠送积分活动 809788
科研通“疑难数据库(出版商)”最低求助积分说明 765635