Kernel differential subgraph reveals dynamic changes in biomolecular networks

鉴定(生物学) 生物网络 基因调控网络 计算生物学 基因本体论 计算机科学 核(代数) 系统生物学 基因 拓扑(电路) 理论计算机科学 数据挖掘 数学 生物 遗传学 基因表达 组合数学 植物
作者
Jiang Xie,Dongfang Lu,Jiaxin Li,Jiao Wang,Yong Zhang,Yanhui Li,Qing Nie
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
被引量:2
标识
DOI:10.1142/s0219720017500275
摘要

Many major diseases, including various types of cancer, are increasingly threatening human health. However, the mechanisms of the dynamic processes underlying these diseases remain ambiguous. From the holistic perspective of systems science, complex biological networks can reveal biological phenomena. Changes among networks in different states influence the direction of living organisms. The identification of the kernel differential subgraph (KDS) that leads to drastic changes is critical. The existing studies contribute to the identification of a KDS in networks with the same nodes; however, networks in different states involve the disappearance of some nodes or the appearance of some new nodes. In this paper, we propose a new topology-based KDS (TKDS) method to explore the core module from gene regulatory networks with different nodes in this process. For the common nodes, the TKDS method considers the differential value (D-value) of the topological change. For the different nodes, TKDS identifies the most similar gene pairs and computes the D-value. Hence, TKDS discovers the essential KDS, which considers the relationships between the same nodes as well as different nodes. After applying this method to non-small cell lung cancer (NSCLC), we identified 30 genes that are most likely related to NSCLC and extracted the KDSs in both the cancer and normal states. Two significance functional modules were revealed, and gene ontology (GO) analyses and literature mining indicated that the KDSs are essential to the processes in NSCLC. In addition, compared with existing methods, TKDS provides a unique perspective in identifying particular genes and KDSs related to NSCLC. Moreover, TKDS has the potential to predict other critical disease-related genes and modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助CY-a301E采纳,获得10
2秒前
2秒前
3秒前
游美女完成签到,获得积分20
3秒前
FashionBoy应助CYY采纳,获得10
5秒前
甜美的瑾瑜完成签到,获得积分10
7秒前
52pry发布了新的文献求助10
7秒前
losan1120发布了新的文献求助10
7秒前
keke发布了新的文献求助10
8秒前
8秒前
9秒前
eno完成签到,获得积分10
9秒前
楚阔发布了新的文献求助10
11秒前
乐观小之发布了新的文献求助10
12秒前
12秒前
12秒前
3MB完成签到 ,获得积分10
13秒前
13秒前
Boring完成签到,获得积分10
14秒前
16秒前
归尘发布了新的文献求助10
17秒前
CY-a301E发布了新的文献求助10
17秒前
彩色德天完成签到 ,获得积分10
17秒前
吴兰田完成签到,获得积分10
18秒前
20秒前
XLC发布了新的文献求助30
20秒前
斯文败类应助废物自救采纳,获得10
22秒前
hkh发布了新的文献求助10
24秒前
27秒前
28秒前
CY-a301E完成签到,获得积分10
29秒前
钱多多完成签到,获得积分20
29秒前
长情箴完成签到 ,获得积分10
30秒前
CYY发布了新的文献求助10
32秒前
钱多多发布了新的文献求助10
32秒前
不倦应助karna采纳,获得10
35秒前
乙醇发布了新的文献求助10
35秒前
852应助XLC采纳,获得30
35秒前
从容的丹南完成签到 ,获得积分10
36秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780355
求助须知:如何正确求助?哪些是违规求助? 3325680
关于积分的说明 10223949
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669024
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648