异常检测
离群值
入侵检测系统
计算机科学
异常(物理)
数据挖掘
极值理论
系列(地层学)
时间序列
数据集
数据流挖掘
集合(抽象数据类型)
人工智能
机器学习
统计
数学
地质学
物理
古生物学
凝聚态物理
程序设计语言
作者
Alban Siffer,Pierre-Alain Fouque,Alexandre Termier,Christine Largouët
标识
DOI:10.1145/3097983.3098144
摘要
Anomaly detection in time series has attracted considerable attention due to its importance in many real-world applications including intrusion detection, energy management and finance. Most approaches for detecting outliers rely on either manually set thresholds or assumptions on the distribution of data according to Chandola, Banerjee and Kumar.
科研通智能强力驱动
Strongly Powered by AbleSci AI