Discriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition

判别式 人工智能 计算机科学 模式识别(心理学) 背景(考古学) 特征提取 计算机视觉 机器学习 生物 古生物学
作者
Tiantian Yan,Jian Shi,Haojie Li,Zhongxuan Luo,Zhihui Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:127: 108629-108629 被引量:7
标识
DOI:10.1016/j.patcog.2022.108629
摘要

• To the best of our knowledge, we are the first to address the issue of weakly supervised low-resolution fine-grained image recognition in an end-to-end manner. By enhancing the network’s perception of discriminative features, the necessary critical details are recovered for fine-grained recognition, so as to improve the performance of weakly supervised low-resolution fine-grained image recognition. • We propose a minimum spanning tree aggregation module to aggregate context information for each pixel by utilizing the structural characteristic of minimum spanning tree, which can help the fine-grained discriminative information restoration sub-network keep a watchful eye on discriminative fine-grained details. • We introduce a semantic relation distillation loss to help the recognition sub-network calibrate the relationship between features, which further prompts the fine-grained detail restoration sub-network to generate the unambiguous details of super-resolution images and recognition sub-network to be aware of discriminative features. • Extensive experiments are carried out on four challenging datasets (CUB-200-2011, Stanford Cars, FGVC-Aircraft and RP-281) to demonstrate the effectiveness of our framework. The existing methods of fine-grained image recognition mainly devote to learning subtle yet discriminative features from the high-resolution input. However, their performance deteriorates significantly when they are used for low quality images because a lot of discriminative details of images are missing. We propose a discriminative information restoration and extraction network, termed as DRE-Net, to address the problem of low-resolution fine-grained image recognition, which has widespread application potential, such as shelf auditing and surveillance scenarios. DRE-Net is the first framework for weakly supervised low-resolution fine-grained image recognition and consists of two sub-networks: (1) fine-grained discriminative information restoration sub-network (FDR) and (2) recognition sub-network with the semantic relation distillation loss (SRD-loss). The first module utilizes the structural characteristic of minimum spanning tree (MST) to establish context information for each pixel by employing the spatial structures between each pixel and other pixels, which can help FDR focus on and restore the critical texture details. The second module employs the SRD-loss to calibrate recognition sub-network by transferring the correct relationships between every two pixels on the feature map. Meanwhile the SRD-loss can further prompt the FDR to recover reliable and accurate fine-grained details and guide the recognition sub-network to perceive the discriminative features from the correct relationships. Extensive experiments on three benchmark datasets and one retail product dataset demonstrate the effectiveness of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LHYoung发布了新的文献求助30
2秒前
赘婿应助SSYZ采纳,获得10
3秒前
4秒前
含蓄垣发布了新的文献求助10
6秒前
张晓天发布了新的文献求助10
7秒前
科研通AI5应助张晓天采纳,获得10
18秒前
淡定的天空完成签到,获得积分10
18秒前
LHYoung完成签到,获得积分10
22秒前
H_dd发布了新的文献求助10
23秒前
Lucky完成签到,获得积分10
24秒前
26秒前
27秒前
孤独的小蜜蜂完成签到,获得积分20
28秒前
笨笨芯发布了新的文献求助30
30秒前
dongmei发布了新的文献求助10
30秒前
狐八道完成签到 ,获得积分10
31秒前
zl应助笨笨芯采纳,获得10
34秒前
34秒前
kkkim完成签到 ,获得积分10
34秒前
酷炫迎波完成签到,获得积分10
36秒前
38秒前
nano_yan完成签到,获得积分10
39秒前
39秒前
Mississippiecho完成签到,获得积分10
40秒前
sssshhhaa发布了新的文献求助10
43秒前
恐龙扛狼完成签到,获得积分10
44秒前
彩云追月发布了新的文献求助10
45秒前
糖糖发布了新的文献求助30
47秒前
48秒前
张张张发布了新的文献求助10
49秒前
笑笑完成签到,获得积分10
49秒前
大模型应助qianshu采纳,获得10
50秒前
51秒前
文南犬完成签到 ,获得积分10
53秒前
weihong完成签到,获得积分10
53秒前
54秒前
粘豆包完成签到 ,获得积分10
56秒前
俭朴丹烟完成签到,获得积分10
57秒前
57秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451