Classification of Depth of Coma Using Complexity Measures and Nonlinear Features of Electroencephalogram Signals.

脑电图 意识 判别式 人工智能 模式识别(心理学) 彗差(光学) 计算机科学 熵(时间箭头) 意识水平 非线性系统 语音识别
作者
Çiğdem Gülüzar Altıntop,Fatma Latifoğlu,Aynur Karayol Akın,Adnan Bayram,Murat Çiftçi
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:: 2250018-2250018
标识
DOI:10.1142/s0129065722500186
摘要

In recent years, some electrophysiological analysis methods of consciousness have been proposed. Most of these studies are based on visual interpretation or statistical analysis, and there is hardly any work classifying the level of consciousness in a deep coma. In this study, we perform an analysis of electroencephalography complexity measures by quantifying features efficiency in differentiating patients in different consciousness levels. Several measures of complexity have been proposed to quantify the complexity of signals. Our aim is to lay the foundation of a system that will objectively define the level of consciousness by performing a complexity analysis of Electroencephalogram (EEG) signals. Therefore, a nonlinear analysis of EEG signals obtained with a recording scheme proposed by us from 39 patients with Glasgow Coma Scale (GCS) between 3 and 8 was performed. Various entropy values (approximate entropy, permutation entropy, etc.) obtained from different algorithms, Hjorth parameters, Lempel-Ziv complexity and Kolmogorov complexity values were extracted from the signals as features. The features were analyzed statistically and the success of features in classifying different levels of consciousness was measured by various classifiers. Consequently, levels of consciousness in deep coma (GCS between 3 and 8) were classified with an accuracy of 90.3%. To the authors' best knowledge, this is the first demonstration of the discriminative nonlinear features extracted from tactile and auditory stimuli EEG signals in distinguishing different GCSs of comatose patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助Arueliano采纳,获得10
刚刚
hh完成签到,获得积分10
1秒前
老实寒云发布了新的文献求助10
2秒前
4秒前
李李李李李完成签到,获得积分10
4秒前
voyager完成签到,获得积分10
4秒前
yy发布了新的文献求助10
8秒前
小背包完成签到 ,获得积分10
8秒前
11秒前
Souliko完成签到,获得积分10
17秒前
死生长叹完成签到 ,获得积分10
19秒前
科研通AI5应助科研通管家采纳,获得30
25秒前
back you up应助科研通管家采纳,获得30
26秒前
back you up应助科研通管家采纳,获得30
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得30
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
燕子完成签到,获得积分10
28秒前
30秒前
007完成签到,获得积分10
31秒前
wy.he应助SOBER采纳,获得10
37秒前
rrrrlc发布了新的文献求助10
37秒前
小巧曼冬发布了新的文献求助20
38秒前
wangsiyuan完成签到 ,获得积分10
38秒前
Ava应助燕子采纳,获得10
43秒前
Cherish完成签到,获得积分10
43秒前
yy完成签到,获得积分20
45秒前
天天快乐应助科研小白采纳,获得10
47秒前
LL完成签到,获得积分10
54秒前
morena应助明明采纳,获得20
55秒前
YifanWang应助明明采纳,获得20
55秒前
菠萝完成签到 ,获得积分10
57秒前
六六完成签到,获得积分10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776445
求助须知:如何正确求助?哪些是违规求助? 3321879
关于积分的说明 10208141
捐赠科研通 3037221
什么是DOI,文献DOI怎么找? 1666605
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872