MLDRL: Multi-loss disentangled representation learning for predicting esophageal cancer response to neoadjuvant chemoradiotherapy using longitudinal CT images

规范化(社会学) 计算机科学 人工智能 模式识别(心理学) 融合 特征学习 人类学 语言学 哲学 社会学
作者
Hailin Yue,Jin Liu,Junjian Li,Hulin Kuang,Jinyi Lang,Jianhong Cheng,Lin Peng,Yongtao Han,Harrison X. Bai,Yu‐Ping Wang,Qifeng Wang,Jianxin Wang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:79: 102423-102423 被引量:21
标识
DOI:10.1016/j.media.2022.102423
摘要

Accurate prediction of pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) is essential for clinical precision treatment. However, the existing methods of predicting pCR in esophageal cancer are based on the single stage data, which limits the performance of these methods. Effective fusion of the longitudinal data has the potential to improve the performance of pCR prediction, thanks to the combination of complementary information. In this study, we propose a new multi-loss disentangled representation learning (MLDRL) to realize the effective fusion of complementary information in the longitudinal data. Specifically, we first disentangle the latent variables of features in each stage into inherent and variational components. Then, we define a multi-loss function to ensure the effectiveness and structure of disentanglement, which consists of a cross-cycle reconstruction loss, an inherent-variational loss and a supervised classification loss. Finally, an adaptive gradient normalization algorithm is applied to balance the training of multiple loss terms by dynamically tuning the gradient magnitudes. Due to the cooperation of the multi-loss function and the adaptive gradient normalization algorithm, MLDRL effectively restrains the potential interference and achieves effective information fusion. The proposed method is evaluated on multi-center datasets, and the experimental results show that our method not only outperforms several state-of-art methods in pCR prediction, but also achieves better performance in the prognostic analysis of multi-center unlabeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小方发布了新的文献求助10
1秒前
echo完成签到 ,获得积分10
2秒前
3秒前
4秒前
aliu完成签到,获得积分10
4秒前
今后应助最爱地瓜和虾滑采纳,获得10
6秒前
9秒前
9秒前
10秒前
aliu发布了新的文献求助10
10秒前
南歌子完成签到 ,获得积分10
13秒前
Orange应助XieQinxie采纳,获得10
13秒前
13秒前
jimskylxk发布了新的文献求助10
15秒前
xxx发布了新的文献求助10
16秒前
pan发布了新的文献求助10
17秒前
可爱的函函应助yyy采纳,获得10
21秒前
天天快乐应助pan采纳,获得10
22秒前
安好完成签到,获得积分10
23秒前
文聪发布了新的文献求助10
23秒前
27秒前
热心市民应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
热心市民应助科研通管家采纳,获得10
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
深情安青应助夜秋瞳采纳,获得10
28秒前
Weiyu完成签到 ,获得积分10
29秒前
29秒前
大模型应助隐城采纳,获得10
30秒前
LWQ123发布了新的文献求助10
31秒前
pan发布了新的文献求助10
32秒前
somous完成签到,获得积分10
33秒前
开朗幸运蔡完成签到,获得积分10
33秒前
35秒前
大个应助pan采纳,获得10
38秒前
38秒前
夜秋瞳发布了新的文献求助10
40秒前
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557