Prediction of depressive symptoms onset and long-term trajectories in home-based older adults using machine learning techniques

接收机工作特性 萧条(经济学) 纵向研究 潜在增长模型 抑郁症状 公制(单位) 老人忧郁量表 医学 机器学习 人工智能 心理学 认知 老年学 精神科 计算机科学 经济 病理 宏观经济学 运营管理
作者
Shaowu Lin,Yafei Wu,Lingxiao He,Ya Fang
出处
期刊:Aging & Mental Health [Routledge]
卷期号:27 (1): 8-17 被引量:18
标识
DOI:10.1080/13607863.2022.2031868
摘要

Objectives Our aim was to explore the possibility of using machine learning (ML) in predicting the onset and trajectories of depressive symptom in home-based older adults over a 7-year period.Methods Depressive symptom data (collected in the year 2011, 2013, 2015 and 2018) of home-based older Chinese (n = 2650) recruited in the China Health and Retirement Longitudinal Study (CHARLS) were included in the current analysis. The latent class growth modeling (LCGM) and growth mixture modeling (GMM) were used to classify different trajectory classes. Based on the identified trajectory patterns, three ML classification algorithms (i.e. gradient boosting decision tree, support vector machine and random forest) were evaluated with a 10-fold cross-validation procedure and a metric of the area under the receiver operating characteristic curve (AUC).Results Four trajectories were identified for the depressive symptoms: no symptoms (63.9%), depressive symptoms onset {incident increasing symptoms [new-onset increasing (16.8%)], chronic symptoms [slowly decreasing (12.5%), persistent high (6.8%)]}. Among the analyzed baseline variables, the 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) score, cognition, sleep time, self-reported memory were the top five important predictors across all trajectories. The mean AUCs of the three predictive models had a range from 0.661 to 0.892.Conclusions ML techniques can be robust in predicting depressive symptom onset and trajectories over a 7-year period with easily accessible sociodemographic and health information.Supplemental data for this article is available online at http://dx.doi.org/10.1080/13607863.2022.2031868
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气成仁完成签到,获得积分10
1秒前
zzZ5发布了新的文献求助30
2秒前
研友_8Y2DXL完成签到,获得积分10
3秒前
6秒前
柴郡喵完成签到,获得积分10
8秒前
聚乙二醇完成签到 ,获得积分10
9秒前
深情安青应助权觅荷采纳,获得10
10秒前
简单的易云完成签到,获得积分10
10秒前
871624521完成签到,获得积分10
12秒前
章章完成签到,获得积分10
12秒前
酷波er应助wxnice采纳,获得10
13秒前
15秒前
16秒前
坚强的雁蓉完成签到 ,获得积分10
16秒前
19秒前
20秒前
zokor完成签到 ,获得积分10
21秒前
不缺人YYDS完成签到,获得积分10
22秒前
rong_w完成签到,获得积分10
23秒前
魏白晴发布了新的文献求助10
23秒前
香蕉觅云应助杨炀采纳,获得10
24秒前
Fiona完成签到 ,获得积分10
25秒前
xiang完成签到 ,获得积分10
26秒前
1234完成签到 ,获得积分10
27秒前
33秒前
amumu完成签到,获得积分10
34秒前
还吃_收你们来啦完成签到,获得积分10
35秒前
日川冈坂完成签到 ,获得积分10
36秒前
万能图书馆应助獭獭采纳,获得10
38秒前
灼灼朗朗完成签到,获得积分10
39秒前
汉堡包应助Stanford采纳,获得10
39秒前
王QQ完成签到 ,获得积分10
39秒前
yy完成签到 ,获得积分10
40秒前
粥粥完成签到,获得积分10
42秒前
百甲完成签到,获得积分10
43秒前
bc应助zzzwederfrft采纳,获得10
44秒前
LYJ完成签到,获得积分10
46秒前
晚风完成签到,获得积分10
47秒前
冰魂应助wxnice采纳,获得10
50秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777767
求助须知:如何正确求助?哪些是违规求助? 3323293
关于积分的说明 10213450
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275