Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning.

计算机科学 水准点(测量) 对抗制 机器学习 图形 人工智能 域适应 特征学习 领域(数学分析) 特征(语言学) 理论计算机科学
作者
Tianshui Chen,Tao Pu,Hefeng Wu,Yuan Xie,Lingbo Liu,Liang Lin
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:PP 被引量:4
标识
DOI:10.1109/tpami.2021.3131222
摘要

Facial expression recognition (FER) has received significant attention in the past decade with witnessed progress, but data inconsistencies among different FER datasets greatly hinder the generalization ability of the models learned on one dataset to another. Recently, a series of cross-domain FER algorithms (CD-FERs) have been extensively developed to address this issue. Although each declares to achieve superior performance, comprehensive and fair comparisons are lacking due to inconsistent choices of the source/target datasets and feature extractors. In this work, we first propose to construct a unified CD-FER evaluation benchmark, in which we re-implement the well-performing CD-FER and recently published general domain adaptation algorithms and ensure that all these algorithms adopt the same source/target datasets and feature extractors for fair CD-FER evaluations. We find that most of the current state-of-the-art algorithms use adversarial learning mechanisms that aim to learn holistic domain-invariant features to mitigate domain shifts. Therefore, we develop a novel adversarial graph representation adaptation (AGRA) framework that integrates graph representation propagation with adversarial learning to realize effective cross-domain holistic-local feature co-adaptation. We conduct extensive and fair comparisons on the unified evaluation benchmark and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
温柔的蛋挞完成签到,获得积分10
2秒前
reuslee完成签到,获得积分10
3秒前
3秒前
心灵美代曼关注了科研通微信公众号
4秒前
Gfi完成签到,获得积分10
4秒前
5秒前
XY完成签到,获得积分10
6秒前
脑洞疼应助赖佳晗采纳,获得10
7秒前
7秒前
李健的小迷弟应助Judy采纳,获得10
7秒前
科研通AI6应助灵巧的傲柏采纳,获得10
7秒前
Akim应助dd采纳,获得10
8秒前
鱼啊鱼发布了新的文献求助10
10秒前
SciGPT应助小汁儿采纳,获得10
11秒前
火星上芹菜完成签到,获得积分10
12秒前
笑点低的芝麻完成签到,获得积分20
12秒前
jijijibibibi完成签到,获得积分10
12秒前
13秒前
14秒前
hhhhhhl完成签到,获得积分10
15秒前
香蕉觅云应助小丸子采纳,获得10
15秒前
liu123479完成签到,获得积分10
17秒前
深情安青应助aaaaa采纳,获得10
17秒前
pengyufen发布了新的文献求助10
17秒前
19秒前
传奇3应助XY采纳,获得10
19秒前
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
20秒前
ding应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
Frank应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得20
21秒前
sevenhill应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
无极微光应助科研通管家采纳,获得20
21秒前
wanci应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456936
求助须知:如何正确求助?哪些是违规求助? 4563423
关于积分的说明 14289987
捐赠科研通 4488078
什么是DOI,文献DOI怎么找? 2458224
邀请新用户注册赠送积分活动 1448485
关于科研通互助平台的介绍 1424142