已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer Model for Functional Near-Infrared Spectroscopy Classification.

计算机科学 人工智能 功能近红外光谱 模式识别(心理学) 预处理器 卷积神经网络 联营 机器学习
作者
Zenghui Wang,Jun Zhang,Xiaochu Zhang,Peng Chen,Bing Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/jbhi.2022.3140531
摘要

Functional near-infrared spectroscopy (fNIRS) is a promising neuroimaging technology. The fNIRS classification problem has always been the focus of the brain-computer interface (BCI). Inspired by the success of Transformer based on self-attention mechanism in the fields of natural language processing and computer vision, we propose an fNIRS classification network based on Transformer, named fNIRS-T. We explore the spatial-level and channel-level representation of fNIRS signals to improve data utilization and network representation capacity. Besides, a preprocessing module, which consists of one-dimensional average pooling and layer normalization, is designed to replace filtering and baseline correction of data preprocessing. It makes fNIRS-T an end-to-end network, called fNIRS-PreT. Compared with traditional machine learning classifiers, convolutional neural network (CNN), and long short-term memory (LSTM), the proposed models obtain the best accuracy on three open-access datasets. Specifically, in the most extensive ternary classification task (30 subjects) that includes three types of overt movements, fNIRS-T, CNN, and LSTM obtain 75.49%, 72.89%, and 61.94% on test sets, respectively. Compared to traditional classifiers, fNIRS-T is at least 27.41% higher than statistical features and 6.79% higher than well-designed features. In the individual subject experiment of the ternary classification task, fNIRS-T achieves an average subject accuracy of 78.22% and surpasses CNN and LSTM by a large margin of +4.75% and +11.33%. fNIRS-PreT using raw data also achieves competitive performance to fNIRS-T. Therefore, the proposed models improve the performance of fNIRS-based BCI significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梧芷发布了新的文献求助10
1秒前
echo完成签到,获得积分10
1秒前
lxz完成签到,获得积分10
4秒前
学渣完成签到 ,获得积分10
7秒前
搜集达人应助跳跃火车采纳,获得10
9秒前
李爱国应助OaaO采纳,获得10
9秒前
15秒前
17秒前
17秒前
跳跃火车发布了新的文献求助10
21秒前
潇洒的卿发布了新的文献求助10
22秒前
OaaO发布了新的文献求助10
23秒前
高大的老头完成签到,获得积分10
23秒前
tjnksy完成签到,获得积分10
23秒前
Blank完成签到 ,获得积分10
29秒前
30秒前
唐语芹完成签到,获得积分20
30秒前
lxz发布了新的文献求助10
30秒前
HuY发布了新的文献求助10
33秒前
zyp完成签到,获得积分20
33秒前
Linson完成签到,获得积分10
39秒前
里里完成签到 ,获得积分10
44秒前
wcy完成签到 ,获得积分10
46秒前
54秒前
111完成签到 ,获得积分10
56秒前
ldz发布了新的文献求助10
59秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得30
1分钟前
李健的小迷弟应助lancelot采纳,获得10
1分钟前
Aliya完成签到 ,获得积分10
1分钟前
秋2完成签到 ,获得积分10
1分钟前
传奇3应助jewelliang采纳,获得10
1分钟前
屈屈完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5839512
求助须知:如何正确求助?哪些是违规求助? 6140855
关于积分的说明 15603706
捐赠科研通 4957382
什么是DOI,文献DOI怎么找? 2672246
邀请新用户注册赠送积分活动 1617304
关于科研通互助平台的介绍 1572300