已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rethinking Fall Detection With Wi-Fi

计算机科学 软件部署 人工智能 机器学习 多样性(政治) 无线 电信 人类学 操作系统 社会学
作者
Zheng Yang,Yi Zhang,Qian Zhang
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:22 (10): 6126-6143 被引量:18
标识
DOI:10.1109/tmc.2022.3188779
摘要

The past decades have witnessed a surge in human fall detection with sensors, cameras, and wireless signals. Among them, Wi-Fi-based fall detection has been one of the most attractive solutions due to the ubiquitous and pervasive deployment of Wi-Fi infrastructures. However, these approaches are still difficult to be put into practical use. To push forward Wi-Fi-based fall detection for wide deployment, three major limitations concerning environmental diversity , motion diversity , and user diversity are required to be resolved. In this paper, we propose FallDar, a Wi-Fi-based deep learning-assisted fall detection system that outperforms state-of-the-art works on the three criteria simultaneously. First, to deal with environmental diversity, FallDar characterizes falls with the speed of the body, which is the most relevant and inherent feature of falling activities, making the system resilient to environmental changes. Second, to deal with motion diversity, FallDar simulates a large amount of fall data of various falling types with a DNN-based generative model. Training with these data, FallDar is endowed the capability of detecting more types of falls. Third, to deal with user diversity, FallDar proposes to incorporate the fall detection network with a user identification network. The network is designed to extract user-independent features, requiring no fall data from new users for system adjustment. We implement FallDar on commercial Wi-Fi devices and conduct experiments in home and office environments for six months. The evaluation results show that FallDar achieves a false alarm rate of 5.7% and a missed alarm rate of 3.4% across all factors, making a fundamental step towards ubiquitous fall detection with Wi-Fi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shangxinyu发布了新的文献求助10
1秒前
心想事陈发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
5秒前
5秒前
5秒前
6秒前
缓慢的饼干完成签到,获得积分10
7秒前
7秒前
健健康康完成签到 ,获得积分10
9秒前
小菜一碟关注了科研通微信公众号
9秒前
10秒前
Soul459完成签到 ,获得积分10
11秒前
Junru完成签到,获得积分10
15秒前
听说现在你成了大锦鲤完成签到,获得积分10
22秒前
风清扬发布了新的文献求助10
22秒前
李爱国应助欢喜的信封采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
25秒前
嘿嘿应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
25秒前
幼萱完成签到,获得积分10
27秒前
27秒前
29秒前
风清扬应助felix采纳,获得50
29秒前
29秒前
小菜一碟发布了新的文献求助10
30秒前
30秒前
NexusExplorer应助abc采纳,获得10
30秒前
31秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060212
求助须知:如何正确求助?哪些是违规求助? 3598507
关于积分的说明 11431177
捐赠科研通 3323098
什么是DOI,文献DOI怎么找? 1826988
邀请新用户注册赠送积分活动 897776
科研通“疑难数据库(出版商)”最低求助积分说明 818633