Deep Learning for Automatic Upper Airway Obstruction Detection by Analysis of Flow-Volume Curve

医学 气道阻塞 肺活量测定 气道 金标准(测试) 狭窄 四分位间距 哮喘 内科学 放射科 外科
作者
Yimin Wang,Yicong Li,Wenya Chen,Changzheng Zhang,Li-juan Liang,Ruibo Huang,Wenhua Jian,Jianling Liang,Senhua Zhu,Dandan Tu,Yi Gao,Nanshan Zhong,Jinping Zheng
出处
期刊:Respiration [S. Karger AG]
卷期号:101 (9): 841-850 被引量:7
标识
DOI:10.1159/000524598
摘要

<b><i>Background:</i></b> Due to the similar symptoms of upper airway obstruction to asthma, misdiagnosis is common. Spirometry is a cost-effective screening test for upper airway obstruction and its characteristic patterns involving fixed, variable intrathoracic and extrathoracic lesions. We aimed to develop a deep learning model to detect upper airway obstruction patterns and compared its performance with that of lung function clinicians. <b><i>Methods:</i></b> Spirometry records were reviewed to detect the possible condition of airway stenosis. Then they were confirmed by the gold standard (e.g., computed tomography, endoscopy, or clinic diagnosis of upper airway obstruction). Images and indices derived from flow-volume curves were used for training and testing the model. Clinicians determined cases using spirometry records from the test set. The deep learning model evaluated the same data. <b><i>Results:</i></b> Of 45,831 patients’ spirometry records, 564 subjects with curves suggesting upper airway obstruction, after verified by the gold standard, 351 patients were confirmed. These cases and another 200 cases without airway stenosis were used as the training and testing sets. 432 clinicians evaluated 20 cases of each of the three patterns and 20 no airway stenosis cases (<i>n</i> = 80). They assigned an accuracy of 41.2% (±15.4) (interquartile range: 27.5–52.5%), with poor agreements (κ = 0.12). For the same cases, the model generated a correct detection of 81.3% (<i>p</i> &#x3c; 0.0001). <b><i>Conclusions:</i></b> Deep learning could detect upper airway obstruction patterns from other classic patterns of ventilatory defects with high accuracy, whereas clinicians presented marked errors and variabilities. The model may serve as a support tool to enhance clinicians’ correct diagnosis of upper airway obstruction using spirometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿绫完成签到 ,获得积分10
1秒前
1秒前
领导范儿应助LLL采纳,获得10
1秒前
所所应助太阳当空照采纳,获得10
3秒前
3秒前
3秒前
3秒前
科研通AI6应助瘦瘦初珍采纳,获得10
7秒前
7秒前
Jere发布了新的文献求助20
7秒前
远志发布了新的文献求助10
8秒前
小明发布了新的文献求助50
8秒前
饱满的曼寒完成签到,获得积分20
9秒前
9秒前
lhm完成签到,获得积分10
10秒前
眼睛大的从雪完成签到,获得积分10
10秒前
geng完成签到,获得积分10
10秒前
12秒前
minya完成签到,获得积分10
12秒前
钟涛完成签到 ,获得积分10
13秒前
13秒前
14秒前
li8888lili8888完成签到 ,获得积分10
15秒前
yyanxuemin919发布了新的文献求助10
16秒前
16秒前
Bizibili完成签到,获得积分10
16秒前
桐桐应助枯枝不如勇者采纳,获得10
17秒前
Ggs完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助10
17秒前
CC发布了新的文献求助20
18秒前
18秒前
18秒前
科研通AI6应助活泼的鸣凤采纳,获得10
19秒前
英俊的铭应助hiswen采纳,获得10
20秒前
无花果应助执着的幻灵采纳,获得10
20秒前
明亮书兰发布了新的文献求助10
21秒前
Jared应助666采纳,获得10
21秒前
21秒前
丰富寄翠完成签到,获得积分10
22秒前
洛尘完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556502
求助须知:如何正确求助?哪些是违规求助? 4641030
关于积分的说明 14664251
捐赠科研通 4583051
什么是DOI,文献DOI怎么找? 2513915
邀请新用户注册赠送积分活动 1488356
关于科研通互助平台的介绍 1459097