Carbon Emission Prediction Model and Analysis in the Yellow River Basin Based on a Machine Learning Method

流域 构造盆地 环境科学 驱动因素 人均 温室气体 碳纤维 中国 可持续发展 水文学(农业)
作者
Jinjie Zhao,Lei Kou,Haitao Wang,Xiaoyu He,Zhihui Xiong,Chaoqiang Liu,Hao Cui
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:14 (10): 6153-6153
标识
DOI:10.3390/su14106153
摘要

Excessive carbon emissions seriously threaten the sustainable development of society and the environment and have attracted the attention of the international community. The Yellow River Basin is an important ecological barrier and economic development zone in China. Studying the influencing factors of carbon emissions in the Yellow River Basin is of great significance to help China achieve carbon peaking. In this study, quadratic assignment procedure regression analysis was used to analyze the factors influencing carbon emissions in the Yellow River Basin from the perspective of regional differences. Accurate carbon emission prediction models can guide the formulation of emission reduction policies. We propose a machine learning prediction model, namely, the long short-term memory network optimized by the sparrow search algorithm, and apply it to carbon emission prediction in the Yellow River Basin. The results show an increasing trend in carbon emissions in the Yellow River Basin, with significant inter-provincial differences. The carbon emission intensity of the Yellow River Basin decreased from 5.187 t/10,000 RMB in 2000 to 1.672 t/10,000 RMB in 2019, showing a gradually decreasing trend. The carbon emissions of Qinghai are less than one-tenth of those in Shandong, the highest carbon emitter. The main factor contributing to carbon emissions in the Yellow River Basin from 2000 to 2010 was GDP per capita; after 2010, the main factor was population. Compared to the single long short-term memory network, the mean absolute percentage error of the proposed model is reduced by 44.38%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
逗逗完成签到,获得积分10
2秒前
科目三应助lijiuyi采纳,获得10
2秒前
Jasper应助风铃采纳,获得10
2秒前
3秒前
3秒前
淡然的大碗完成签到,获得积分10
4秒前
4秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
研友_VZG7GZ应助fffff采纳,获得10
6秒前
圆圆发布了新的文献求助10
7秒前
完美世界应助ZIS采纳,获得10
7秒前
vv123456ha完成签到,获得积分10
7秒前
8秒前
甜甜白莲完成签到,获得积分20
8秒前
杨杨完成签到,获得积分10
8秒前
Wen发布了新的文献求助10
9秒前
HAL应助虞无声采纳,获得10
9秒前
Huco完成签到,获得积分10
10秒前
10秒前
阿杰完成签到,获得积分10
11秒前
韶华若锦发布了新的文献求助10
12秒前
林川完成签到,获得积分10
12秒前
西音发布了新的文献求助10
14秒前
李双艳完成签到,获得积分10
14秒前
北方完成签到,获得积分10
14秒前
Maestro_S应助听话的雁梅采纳,获得20
14秒前
哒哒哒完成签到,获得积分10
15秒前
123455完成签到,获得积分10
16秒前
元竺完成签到,获得积分10
16秒前
欢喜的雁枫发布了新的文献求助100
17秒前
吨吨完成签到,获得积分10
17秒前
科研通AI2S应助投石问路采纳,获得10
17秒前
18秒前
謓言完成签到,获得积分10
18秒前
ARIA完成签到 ,获得积分10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4416174
求助须知:如何正确求助?哪些是违规求助? 3898361
关于积分的说明 12124059
捐赠科研通 3544151
什么是DOI,文献DOI怎么找? 1944931
邀请新用户注册赠送积分活动 985154
科研通“疑难数据库(出版商)”最低求助积分说明 881586