成核
结晶
材料科学
胶体
超材料
化学物理
胶体晶体
纳米技术
实现(概率)
动力学
光子晶体
光子超材料
自组装
DNA
化学工程
化学
物理化学
热力学
物理
光电子学
工程类
统计
量子力学
生物化学
数学
作者
Alexander Hensley,William M. Jacobs,W. Benjamin Rogers
标识
DOI:10.1073/pnas.2114050118
摘要
Significance Assembling optical metamaterials from DNA-coated colloids has been a central goal of programmable self-assembly for decades. Despite significant advances in expanding the structural diversity of colloidal crystals, a lack of understanding of the crystallization pathways has hindered the realization of programmable metamaterials. In this paper, we combine experiments and theory to develop a complete understanding of the crystallization dynamics. We show that the nucleation and growth kinetics of DNA-coated colloids are fundamentally different from those of atoms or small molecules, owing to an effective friction that arises from transient DNA hybridization. By incorporating this effective friction into classical theories, we predict the absolute rates of nucleation and growth with quantitative accuracy, enabling the design of protocols for making photonic crystals.
科研通智能强力驱动
Strongly Powered by AbleSci AI