A new metric for morphologic variability using landform shape classification via supervised machine learning

断层崖 地形地貌 地质学 主成分分析 人工智能 支持向量机 公制(单位) 摄影测量学 断层(地质) 模式识别(心理学) 计算机科学 遥感 地貌学 地震学 运营管理 经济
作者
Cassandra A.P. Brigham,Juliet G. Crider
出处
期刊:Geomorphology [Elsevier]
卷期号:399: 108065-108065 被引量:6
标识
DOI:10.1016/j.geomorph.2021.108065
摘要

The frequency and degree of change in landform-profile shape can provide insights into the evolution of complex landforms. Here, we present a workflow that can be used to quantify this aspect of morphologic variability along any landform, leveraging both the expertise of a geomorphologist and the efficiency of a machine-learning algorithm. As a case study, we tackle the problem of degradation of fault scarps in jointed bedrock. We made field observations of seven fault scarps in jointed bedrock from Hawai'i, California and Iceland and collected aerial imagery for Structure-from-Motion (SfM) photogrammetry. From these observations, we first manually classify fault-scarp profiles extracted from SfM-derived point clouds into six morphologic categories defined by a geomorphologist with a view towards geologic process. Then, we use principal component analysis with singular value decomposition to quantitatively distinguish morphologic classes. We follow this by employing the support vector machine (SVM) method to build a supervised classifier, using the principal-component coordinates of the classified profiles in principal component space as a training set. Classification performance was assessed using 5-fold cross validation (81% accuracy) and with independent test data (80% accuracy). Finally, we define a morphologic variability metric and calculate it by determining the number of classes represented and the standard deviation of their proportions in a moving window along a fault scarp. By analyzing the covariance between the morphologic variability metric and other geomorphic parameters, we can quantitatively determine the drivers of scarp form. We find that morphologic variability decreases with scarp maturity. Our results suggest that the morphologic variability metric is a promising tool to understand the evolution of complex landforms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷艳纸鹤发布了新的文献求助10
2秒前
852应助xia采纳,获得10
5秒前
DoIt完成签到,获得积分10
6秒前
Ava应助Lillian_7采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
st完成签到,获得积分10
11秒前
12秒前
13秒前
ruby发布了新的文献求助10
13秒前
14秒前
自渡完成签到 ,获得积分10
15秒前
15秒前
平常映雁完成签到,获得积分10
15秒前
15秒前
赛达儿发布了新的文献求助10
16秒前
wyx发布了新的文献求助10
17秒前
梧桐发布了新的文献求助10
18秒前
999完成签到 ,获得积分10
19秒前
巴豆醇完成签到 ,获得积分10
19秒前
牛的滑完成签到,获得积分20
19秒前
19秒前
虚幻的凤发布了新的文献求助10
20秒前
寻空完成签到,获得积分10
21秒前
gapper完成签到 ,获得积分10
23秒前
卜念完成签到,获得积分10
25秒前
无花果应助赛达儿采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
ccm应助科研通管家采纳,获得10
25秒前
口岸是你应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
26秒前
26秒前
杨杨得亿应助科研通管家采纳,获得20
26秒前
ccm应助科研通管家采纳,获得10
26秒前
口岸是你应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
慎默应助科研通管家采纳,获得10
26秒前
ding应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073