Learning Generalizable Vision-Tactile Robotic Grasping Strategy for Deformable Objects via Transformer

人工智能 计算机科学 夹持器 变压器 推论 计算机视觉 欠驱动 卷积神经网络 模式识别(心理学) 机器人 工程类 电压 机械工程 电气工程
作者
Yunhai Han,Kelin Yu,Rahul Batra,Nathan Boyd,C. H. Mehta,Tuo Zhao,Yu She,Seth Hutchinson,Ye Zhao
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tmech.2024.3400789
摘要

Reliable robotic grasping, especially with deformable objects such as fruits, remains a challenging task due to underactuated contact interactions with a gripper, unknown object dynamics and geometries. In this study, we propose a Transformer-based robotic grasping framework for rigid grippers that leverage tactile and visual information for safe object grasping. Specifically, the Transformer models learn physical feature embeddings with sensor feedback through performing two pre-defined explorative actions (pinching and sliding) and predict a grasping outcome through a multilayer perceptron (MLP) with a given grasping strength. Using these predictions, the gripper predicts a safe grasping strength via inference. Compared with convolutional recurrent networks (CNN), the Transformer models can capture the long-term dependencies across the image sequences and process spatial-temporal features simultaneously. We first benchmark the Transformer models on a public dataset for slip detection. Following that, we show that the Transformer models outperform a CNN+LSTM model in terms of grasping accuracy and computational efficiency. We also collect our fruit grasping dataset and conduct online grasping experiments using the proposed framework for both seen and unseen fruits. Our codes and dataset are public on GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zhouleiwang采纳,获得10
1秒前
爱学习发布了新的文献求助10
1秒前
2秒前
Bake完成签到,获得积分10
2秒前
999999发布了新的文献求助10
2秒前
风中的文龙完成签到,获得积分10
3秒前
zzzz给zzzz的求助进行了留言
4秒前
4秒前
7秒前
7秒前
A市觅食高手完成签到,获得积分10
7秒前
8秒前
9秒前
CodeCraft应助爱学习的楠采纳,获得10
10秒前
科研通AI5应助张皓123采纳,获得10
10秒前
万能图书馆应助优雅含灵采纳,获得10
11秒前
11秒前
12秒前
来日可追发布了新的文献求助10
12秒前
牛牛牛完成签到,获得积分10
12秒前
Avvei发布了新的文献求助10
12秒前
单于天宇发布了新的文献求助30
13秒前
深情安青应助如意草丛采纳,获得10
14秒前
14秒前
14秒前
14秒前
evak发布了新的文献求助10
14秒前
sxqqq应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
zgt01应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
15秒前
zgt01应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791796
求助须知:如何正确求助?哪些是违规求助? 3336103
关于积分的说明 10278863
捐赠科研通 3052741
什么是DOI,文献DOI怎么找? 1675319
邀请新用户注册赠送积分活动 803360
科研通“疑难数据库(出版商)”最低求助积分说明 761178