Dendrite-Free Epitaxial Growth of Lithium for Efficient Charging of Li–O2 Batteries with Improved Cycle Life

电解质 材料科学 枝晶(数学) 电镀(地质) 外延 化学工程 快离子导体 锂(药物) 扫描电子显微镜 化学 纳米技术 复合材料 电极 图层(电子) 物理化学 地质学 内分泌学 工程类 几何学 医学 数学 地球物理学
作者
Arghya Dutta,Kimihiko Ito,Yoshimi Kubo
出处
期刊:Meeting abstracts 卷期号:MA2019-01 (2): 352-352
标识
DOI:10.1149/ma2019-01/2/352
摘要

Realization of rechargeable Li-metal batteries with high energy density is hindered by uneven Li deposition leading to dendrite formation during repeated cycles. Uncontrolled dendrite growth induces internal short-circuits which limit the cell lifetime and generate ohmic heat leading to catastrophic failure when a volatile electrolyte is used. Several strategies have been conceived by the researchers to suppress dendritic growth and delay the premature death of the cell. These efforts include using electrolyte additives to form a porous ion-conducting solid electrolyte interphase (SEI) layer on metal preventing further reaction, 1 implementing solid electrolytes with optimum mechanical properties, 2 designing a Li matrix, 3 reducing local space charge on the Li surface, 4 and so on. Although considerable improvements have been achieved from these earlier studies, microscopically smooth Li surface covered with thin and uniform SEI layers is yet to be realized. Alternatively, here we show an unprecedented dendrite-free epitaxial electrodeposition of Li in the presence of LiBr–LiNO 3 /glyme ether electrolyte under O 2 atmosphere. Stripping and plating of Li metal was investigated by using a symmetrical Li│Li cell and it has been found that in 1 M LiNO 3 +0.05 M LiBr/tetraglyme electrolyte the plating of Li metal shows dendrite-free epitaxial growth up to a thickness of >20 μm which is clearly observed by the scanning electron microscopic (SEM) images and electron backscatter diffraction (EBSD) signal in Figure 1. The epitaxial growth of Li metal seems to be benefited from the synergistic effect of the anions Br − and NO 3 − forming a thin and homogeneous Li 2 O–rich solid electrolyte interphase (SEI) layer which is formed during the very first discharge (stripping) process, where the corrosive nature of Br − removes the original thick passivation layer on Li surface which is then again oxidized (passivated) by the NO 3 − to prevent further reactions with the electrolyte. Because of this, the SEI layer remains thin and facilitates the electropolishing effect and gets ready for the epitaxial electroplating of Li in the following charge process. Similar epitaxial growths of Li have been observed for both symmetrical Li│Li cell and Li–O 2 full cell resulting in a much improved performance with longer cycle life. 5,6 However, in contrast, LiNO 3 alone or other lithium salts, such as Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), Lithium trifluoromethanesulfonate (LiTf), do not exhibit any epitaxial Li deposition. This demonstrates the bi-functional activity of the dual anion electrolyte LiNO 3 –LiBr towards dendrite-free epitaxial growth of Li. The role of deposition rate, effect of electrolyte solvent and a detailed mechanism of epitaxial growth will be discussed in the presentation. References: Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. J. Am. Chem. Soc. 2013 , 135 , 2076 Monroe, C.; Newman, J. J. Electrochem. Soc. 2005 , 152 , A396 Lin, D.; Liu, Y.; Liang, Z.; Lee, H.-W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotechnol . 2016 , 11 , 626 Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R. Nano Lett . 2014 , 14 , 6889 Xin, X.; Ito, K.; Kubo, Y. ACS Appl. Mater. Interfaces 2017 , 9 , 25976 Xin, X.; Ito, K.; Dutta, A.; Kubo, Y. Angew. Chem. Int. Ed . 2018 , 57 , 13206 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无理完成签到 ,获得积分10
刚刚
善学以致用应助15采纳,获得10
1秒前
1秒前
nhscyhy发布了新的文献求助10
1秒前
1秒前
瑜軒完成签到,获得积分10
2秒前
2秒前
20231125发布了新的文献求助10
2秒前
ding应助太空喜之郎采纳,获得10
3秒前
曼凡发布了新的文献求助10
3秒前
酷bile发布了新的文献求助10
4秒前
4秒前
李lll发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
6秒前
SILENCE发布了新的文献求助10
6秒前
李子敬发布了新的文献求助10
7秒前
8秒前
糊涂的老师完成签到,获得积分10
8秒前
bbnomulaa发布了新的文献求助10
8秒前
迅速的电源完成签到,获得积分10
9秒前
今后应助干净的烧鹅采纳,获得10
9秒前
magic发布了新的文献求助10
10秒前
LXXue发布了新的文献求助10
10秒前
11秒前
科研通AI5应助ttxs001采纳,获得30
11秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4749219
求助须知:如何正确求助?哪些是违规求助? 4095680
关于积分的说明 12672239
捐赠科研通 3808050
什么是DOI,文献DOI怎么找? 2102318
邀请新用户注册赠送积分活动 1127564
关于科研通互助平台的介绍 1004095