量子行走
量子退相干
随机游动
一维异质随机游动
极限(数学)
统计物理学
职位(财务)
物理
量子
经典极限
二次方程
量子力学
差异(会计)
数学
量子算法
统计
数学分析
会计
业务
财务
经济
几何学
作者
Todd A. Brun,Hilary A. Carteret,Andris Ambainis
标识
DOI:10.1103/physrevlett.91.130602
摘要
We look at two possible routes to classical behavior for the discrete quantum random walk on the integers: decoherence in the quantum "coin" which drives the walk, or the use of higher-dimensional (or multiple) coins to dilute the effects of interference. We use the position variance as an indicator of classical behavior and find analytical expressions for this in the long-time limit; we see that the multicoin walk retains the "quantum" quadratic growth of the variance except in the limit of a new coin for every step, while the walk with decoherence exhibits "classical" linear growth of the variance even for weak decoherence.
科研通智能强力驱动
Strongly Powered by AbleSci AI