自愈水凝胶
神经干细胞
材料科学
胶质纤维酸性蛋白
透明质酸
细胞外基质
生物物理学
间充质干细胞
中脑
细胞分化
生物医学工程
细胞生物学
化学
神经科学
干细胞
生物
解剖
生物化学
免疫学
中枢神经系统
医学
高分子化学
免疫组织化学
基因
作者
Stephanie K. Seidlits,Zin Z. Khaing,Rebecca R. Petersen,Jonathan D. Nickels,Jennifer E. Vanscoy,Jason B. Shear,Christine E. Schmidt
出处
期刊:Biomaterials
[Elsevier BV]
日期:2010-02-20
卷期号:31 (14): 3930-3940
被引量:464
标识
DOI:10.1016/j.biomaterials.2010.01.125
摘要
We report the ability to direct the differentiation pathway of neural progenitor cells (NPCs) within hydrogels having tunable mechanical properties. By modifying the polymeric sugar hyaluronic acid (HA), a major extracellular matrix component in the fetal mammalian brain, with varying numbers of photocrosslinkable methacrylate groups, hydrogels could be prepared with bulk compressive moduli spanning the threefold range measured for neonatal brain and adult spinal cord. Ventral midbrain-derived NPCs were photoencapsulated into HA hydrogels and remained viable after encapsulation. After three weeks, the majority of NPCs cultured in hydrogels with mechanical properties comparable to those of neonatal brain had differentiated into neurons (ß-III tubulin-positive), many of which had extended long, branched processes, indicative of a relatively mature phenotype. In contrast, NPCs within stiffer hydrogels, with mechanical properties comparable to those of adult brain, had differentiated into mostly astrocytes (glial fibrillary acidic protein (GFAP)-positive). Primary spinal astrocytes cultured in the hydrogel variants for two weeks acquired a spread and elongated morphology only in the stiffest hydrogels evaluated, with mechanical properties similar to adult tissue. Results demonstrate that the mechanical properties of these scaffolds can assert a defining influence on the differentiation of ventral midbrain-derived NPCs, which have strong clinical relevance because of their ability to mature into dopaminergic neurons of the substantia nigra, cells that idiopathically degenerate in individuals suffering from Parkinson's disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI