血管紧张素II
NADPH氧化酶
蛋白激酶B
内科学
RAC1
内分泌学
生物
肌肉肥大
信号转导
超氧化物
细胞生物学
活性氧
生物化学
医学
酶
血压
作者
Shawn Hingtgen,Xin Tian,Jusan Yang,Shannon M. Dunlay,Andrew S. Peek,Yihe Wu,Ram V. Sharma,John F. Engelhardt,Robin L. Davisson
标识
DOI:10.1152/physiolgenomics.00029.2005
摘要
Angiotensin II (ANG II) has profound effects on the development and progression of pathological cardiac hypertrophy; however, the intracellular signaling mechanisms are not fully understood. In this study, we used genetic tools to test the hypothesis that increased formation of superoxide (O2-*) radicals from a Rac1-regulated Nox2-containing NADPH oxidase is a key upstream mediator of ANG II-induced activation of serine-threonine kinase Akt, and that this signaling cascade plays a crucial role in ANG II-dependent cardiomyocyte hypertrophy. ANG II caused a significant time-dependent increase in Rac1 activation and O2-* production in primary neonatal rat cardiomyocytes, and these responses were abolished by adenoviral (Ad)-mediated expression of a dominant-negative Rac1 (AdN17Rac1) or cytoplasmic Cu/ZnSOD (AdCu/ZnSOD). Moreover, both AdN17Rac1 and AdCu/ZnSOD significantly attenuated ANG II-stimulated increases in cardiomyocyte size. Quantitative real-time PCR analysis demonstrated that Nox2 is the homolog expressed at highest levels in primary neonatal cardiomyocytes, and small interference RNA (siRNA) directed against it selectively decreased Nox2 expression by >95% and abolished both ANG II-induced O2-* generation and cardiomyocyte hypertrophy. Finally, ANG II caused a time-dependent increase in Akt activity via activation of AT(1) receptors, and this response was abolished by Ad-mediated expression of cytosolic human O2-* dismutase (AdCu/ZnSOD). Furthermore, pretreatment of cardiomyocytes with dominant-negative Akt (AdDNAkt) abolished ANG II-induced cellular hypertrophy. These findings suggest that O2-* generated by a Nox2-containing NADPH oxidase is a central mediator of ANG II-induced Akt activation and cardiomyocyte hypertrophy, and that dysregulation of this signaling cascade may play an important role in cardiac hypertrophy.
科研通智能强力驱动
Strongly Powered by AbleSci AI