Enhanced Interfacial Kinetics and High-Voltage/High-Rate Performance of LiCoO2 Cathode by Controlled Sputter-Coating with a Nanoscale Li4Ti5O12 Ionic Conductor

材料科学 电极 涂层 阴极 电解质 钝化 化学工程 电化学 溅射 图层(电子) 溅射沉积 锂(药物) 扩散 纳米技术 薄膜 物理化学 内分泌学 化学 工程类 物理 热力学 医学
作者
Aijun Zhou,Xinyi Dai,Yanting Lu,Yinglin Wang,Maosen Fu,Jingze Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:8 (49): 34123-34131 被引量:53
标识
DOI:10.1021/acsami.6b11630
摘要

The selection and optimization of coating material/approach for electrode materials have been under intensive pursuit to address the high-voltage induced degradation of lithium ion batteries. Herein, we demonstrate an efficient way to enhance the high-voltage electrochemical performance of LiCoO2 cathode by postcoating of its composite electrode with Li4Ti5O12 (LTO) via magnetron sputtering. With a nanoscale (∼25 nm) LTO coating, the reversible capacity of LiCoO2 after 60 cycles is significantly increased by 40% (to 170 mAh g-1) at room temperature and by 118% (to 139 mAh g-1) at 55 °C. Meanwhile, the electrode's rate capability is also greatly improved, which should be associated with the high Li+ diffusivity of the LTO surface layer, while the bulk electronic conductivity of the electrode is unaffected. At 12 C, the capacity of the coated electrode reaches 113 mAh g-1, being 70% larger than that of the uncoated one. The surface interaction between LTO and LiCoO2 is supposed to reduce the space-charge layer at the LiCoO2-electrolyte interface, which makes the Li+ diffusion much easier as evidenced by the largely enhanced diffusion coefficient of the coated electrode (an order of magnitude improvement). In addition, the LTO coating layer, which is electrochemically and structurally stable in the applied potential range, plays the role of a passivation layer or an artificial and friendly solid electrolyte interface (SEI) layer on the electrode surface. Such protection is able to impede propagation of the in situ formed irreversible SEI and thus guarantee a high initial columbic efficiency and superior cycling stability at high voltage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈展峰发布了新的文献求助10
1秒前
酷波er应助岁城采纳,获得20
2秒前
3秒前
喵喵喵发布了新的文献求助10
3秒前
3秒前
4秒前
爆米花应助Bella采纳,获得30
5秒前
科研通AI5应助杏林春暖采纳,获得10
5秒前
5秒前
领导范儿应助gentille采纳,获得10
6秒前
巫马百招完成签到,获得积分10
7秒前
yhhhhhhh2024发布了新的文献求助10
8秒前
景代丝完成签到,获得积分10
8秒前
活泼远山发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
汉堡包应助务实的白薇采纳,获得10
10秒前
123666完成签到,获得积分10
11秒前
aaa142hehe完成签到 ,获得积分10
11秒前
顾矜应助小姜采纳,获得10
11秒前
12秒前
13秒前
14秒前
程若男完成签到,获得积分10
15秒前
姜姜完成签到,获得积分10
16秒前
今后应助yhhhhhhh2024采纳,获得10
17秒前
17秒前
斯文败类应助zmd采纳,获得10
18秒前
19秒前
zm发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
任性的兔子给任性的兔子的求助进行了留言
20秒前
小二郎应助KerwinLLL采纳,获得10
20秒前
21秒前
21秒前
22秒前
22秒前
kk发布了新的文献求助10
23秒前
CipherSage应助雪落六年yyds采纳,获得20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4662993
求助须知:如何正确求助?哪些是违规求助? 4045092
关于积分的说明 12512062
捐赠科研通 3737432
什么是DOI,文献DOI怎么找? 2063908
邀请新用户注册赠送积分活动 1093436
科研通“疑难数据库(出版商)”最低求助积分说明 974203