清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

推论 计算机科学 基因调控网络 标杆管理 算法 数据挖掘 基本事实 机器学习 人工智能 合成数据 理论计算机科学 基因 基因表达 生物 生物化学 业务 营销
作者
Aditya Pratapa,Amogh P. Jalihal,Jeffrey Law,Aditya Bharadwaj,T. M. Murali
标识
DOI:10.1101/642926
摘要

Abstract We present a comprehensive evaluation of state-of-the-art algorithms for inferring gene regulatory networks (GRNs) from single-cell gene expression data. We develop a systematic framework called BEELINE for this purpose. We use synthetic networks with predictable cellular trajectories as well as curated Boolean models to serve as the ground truth for evaluating the accuracy of GRN inference algorithms. We develop a strategy to simulate single-cell gene expression data from these two types of networks that avoids the pitfalls of previously-used methods. We selected 12 representative GRN inference algorithms. We found that the accuracy of these methods (measured in terms of AUROC and AUPRC) was moderate, by and large, although the methods were better in recovering interactions in the synthetic networks than the Boolean models. Techniques that did not require pseudotime-ordered cells were more accurate, in general. The observation that the endpoints of many false positive edges were connected by paths of length two in the Boolean models suggested that indirect effects may be predominant in the outputs of the algorithms we tested. The predicted networks were considerably inconsistent with each other, indicating that combining GRN inference algorithms using ensembles is likely to be challenging. Based on the results, we present some recommendations to users of GRN inference algorithms, including suggestions on how to create simulated gene expression datasets for testing them. BEELINE, which is available at http://github.com/murali-group/BEELINE under an open-source license, will aid in the future development of GRN inference algorithms for single-cell transcriptomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emperor完成签到 ,获得积分0
6秒前
跳跃的曼寒完成签到,获得积分10
11秒前
迷茫的一代完成签到,获得积分10
15秒前
含糊的茹妖完成签到 ,获得积分0
30秒前
千里草完成签到,获得积分10
2分钟前
白菜完成签到 ,获得积分10
2分钟前
lanxinge完成签到 ,获得积分20
2分钟前
YOLO完成签到 ,获得积分10
3分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
5分钟前
毛爱民发布了新的文献求助10
5分钟前
宇文非笑完成签到 ,获得积分0
5分钟前
moroa完成签到,获得积分10
5分钟前
阿卫完成签到,获得积分10
6分钟前
科研通AI5应助budingman采纳,获得10
6分钟前
111完成签到 ,获得积分10
6分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
在水一方应助budingman采纳,获得10
7分钟前
7分钟前
JACK发布了新的文献求助10
7分钟前
JACK完成签到 ,获得积分10
7分钟前
在水一方应助budingman采纳,获得10
7分钟前
8分钟前
8分钟前
MchemG给穆紫的求助进行了留言
9分钟前
Otter完成签到,获得积分10
9分钟前
练得身形似鹤形完成签到 ,获得积分10
9分钟前
yangdan完成签到,获得积分20
10分钟前
善学以致用应助yangdan采纳,获得10
10分钟前
yangdan关注了科研通微信公众号
11分钟前
physicalproblem完成签到,获得积分10
12分钟前
天天快乐应助科研通管家采纳,获得10
12分钟前
13分钟前
budingman发布了新的文献求助10
13分钟前
14分钟前
14分钟前
budingman发布了新的文献求助10
14分钟前
14分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282092
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468