材料科学
煅烧
硫化氢
多孔性
检出限
化学工程
吸附
锌
响应时间
纳米颗粒
比表面积
纳米技术
氧化物
硫黄
催化作用
复合材料
色谱法
有机化学
工程类
化学
计算机图形学(图像)
计算机科学
冶金
作者
Hui-Bing Na,Xian‐Fa Zhang,Zhao‐Peng Deng,Yingming Xu,Li-Hua Huo,Shan Gao
标识
DOI:10.1021/acsami.9b00173
摘要
Response and recovery time to toxic and inflammable hydrogen sulfide (H2S) gas are important indexes for metal oxide sensors in real-time environmental monitoring. However, large-scale production of ZnO-based sensing materials for fast response to ppb-level H2S has been rarely reported. In this work, hierarchically porous hexagonal ZnO hollow tubule was simply fabricated by zinc salt impregnation and subsequently calcination using absorbent cotton as the template. The influence of calcination temperature on the corresponding morphology and sensing properties is also explored. The hollow tubules calcined at 600 °C are constructed from abundant cross-linked nanoparticles (∼20 nm). Its Brunauer-Emmett-Teller surface area is 31 m2·g-1 and the meso- and macroporous sizes are centered at 35 and 115 nm, respectively. The sensor with a lower detection limit of 10 ppb exhibits a fast response speed of 29 s toward the 50 ppb H2S rather than those of the reported intrinsic and doped ZnO-based sensing materials. Furthermore, the sensor shows a wide linear range (10-1000 ppb), good reproducibility, and stability. Such excellent trace ppb-level H2S performances are mainly related to the inherent characteristics of hierarchically porous hollow tubular structure and the surface-adsorbed oxygen control type mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI