Intelligent Approach Based on Random Forest for Safety Risk Prediction of Deep Foundation Pit in Subway Stations

基础(证据) 安全监测 工程类 地铁站 风险评估 深度学习 施工现场安全 土木工程 运输工程 计算机科学 人工智能 计算机安全 结构工程 历史 生物 生物技术 考古
作者
Ying Zhou,Shiqi Li,Cheng Zhou,Hanbin Luo
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (1) 被引量:100
标识
DOI:10.1061/(asce)cp.1943-5487.0000796
摘要

The number of safety accidents caused by excavation of deep foundation pits in subway stations has been increasing rapidly in recent years. Thus, precisely predicting the safety risks for subway deep foundation pits bears importance. Existing methods, such as machine learning models, have been established for predicting such risks. However, these methods are unable to provide accurate results for deep foundation pits in subway stations due to small and unbalanced data samples. In this research, an intelligent model based on random forest (RF) was established for risk prediction of deep foundation pits in subway stations. To achieve such a goal, different types of monitoring data and risk level monitoring were introduced to the RF for training the model and estimating unknown relationships between monitoring values and safety risks of pits. An actual deep foundation pit in a subway station of the Wuhan Metro was used to demonstrate the applicability of the developed RF risk prediction model. The results showed that the superiority of the proposed RF risk prediction model can be used as a basis to implement a decision-making tool for predicting safety risks of subway foundation pits. The importance evaluation function of the model provides the ability to aid onsite engineers in determining the causes of safety risks, thus facilitating the implementation of emergency measures in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Robin采纳,获得10
3秒前
今后应助devilito采纳,获得30
4秒前
5秒前
嘎嘎嘎嘎完成签到,获得积分10
5秒前
6秒前
cff完成签到,获得积分10
6秒前
10秒前
11秒前
13秒前
完美世界应助Robin采纳,获得10
14秒前
15秒前
XM发布了新的文献求助10
16秒前
彪壮的小玉完成签到,获得积分10
25秒前
科研通AI5应助dhua采纳,获得30
28秒前
甜甜圈完成签到,获得积分20
29秒前
bc应助ddh采纳,获得30
32秒前
33秒前
36秒前
kai发布了新的文献求助10
38秒前
devilito发布了新的文献求助30
40秒前
40秒前
364zdk完成签到 ,获得积分10
40秒前
Tink完成签到,获得积分10
42秒前
43秒前
新晋学术小生完成签到 ,获得积分10
43秒前
44秒前
45秒前
刘搞笑发布了新的文献求助10
45秒前
善学以致用应助oia采纳,获得10
46秒前
caimeng发布了新的文献求助10
47秒前
47秒前
小苗发布了新的文献求助10
48秒前
领导范儿应助纯真的笑容采纳,获得10
49秒前
jtj完成签到 ,获得积分10
52秒前
53秒前
小白发布了新的文献求助30
53秒前
56秒前
57秒前
领导范儿应助不安梦桃采纳,获得10
58秒前
隐形曼青应助Mr.Bad采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415