External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data

医学 全国肺筛查试验 校准 统计 肺癌筛查 肺癌 接收机工作特性 协变量 数据集 绘图(图形) 核医学 放射科 人工智能 内科学 数学 计算机科学
作者
Audrey Winter,Denise R. Aberle,William Hsu
出处
期刊:Thorax [BMJ]
卷期号:74 (6): 551-563 被引量:25
标识
DOI:10.1136/thoraxjnl-2018-212413
摘要

Introduction We performed an external validation of the Brock model using the National Lung Screening Trial (NLST) data set, following strict guidelines set forth by the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis statement. We report how external validation results can be interpreted and highlight the role of recalibration and model updating. Materials and methods We assessed model discrimination and calibration using the NLST data set. Adhering to the inclusion/exclusion criteria reported by McWilliams et al , we identified 7879 non-calcified nodules discovered at the baseline low-dose CT screen with 2 years of follow-up. We characterised differences between Pan-Canadian Early Detection of Lung Cancer Study and NLST cohorts. We calculated the slope on the prognostic index and the intercept coefficient by fitting the original Brock model to NLST. We also assessed the impact of model recalibration and the addition of new covariates such as body mass index, smoking status, pack-years and asbestos. Results While the area under the curve (AUC) of the model was good, 0.905 (95% CI 0.882 to 0.928), a histogram plot showed that the model poorly differentiated between benign and malignant cases. The calibration plot showed that the model overestimated the probability of cancer. In recalibrating the model, the coefficients for emphysema, spiculation and nodule count were updated. The updated model had an improved calibration and achieved an optimism-corrected AUC of 0.912 (95% CI 0.891 to 0.932). Only pack-year history was found to be significant (p<0.01) among the new covariates evaluated. Conclusion While the Brock model achieved a high AUC when validated on the NLST data set, the model benefited from updating and recalibration. Nevertheless, covariates used in the model appear to be insufficient to adequately discriminate malignant cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhouzhou完成签到,获得积分20
2秒前
hailey完成签到,获得积分10
2秒前
现代的妍发布了新的文献求助10
3秒前
5秒前
6秒前
日日新发布了新的文献求助10
8秒前
9秒前
小苹果完成签到,获得积分10
10秒前
幸福的向彤完成签到,获得积分10
12秒前
香蕉觅云应助隐形熊猫采纳,获得10
12秒前
13秒前
13秒前
13秒前
13秒前
机智思真完成签到,获得积分10
14秒前
谦让的莆完成签到 ,获得积分10
14秒前
145263发布了新的文献求助10
14秒前
qiyun完成签到,获得积分10
14秒前
ChatGPT发布了新的文献求助10
16秒前
Maestro_S应助陈江河采纳,获得10
17秒前
18秒前
打打应助苏言采纳,获得10
19秒前
希望天下0贩的0应助145263采纳,获得10
19秒前
Blade发布了新的文献求助10
19秒前
机智思真发布了新的文献求助10
20秒前
20秒前
万事顺意完成签到 ,获得积分10
21秒前
zhang完成签到,获得积分10
23秒前
24秒前
日日新完成签到,获得积分10
24秒前
25秒前
田様应助徐徐徐采纳,获得10
26秒前
26秒前
win关闭了win文献求助
27秒前
yar应助落寞的土豆采纳,获得10
28秒前
yar应助落寞的土豆采纳,获得10
28秒前
zhang发布了新的文献求助10
28秒前
苏言完成签到,获得积分10
29秒前
江河湖海完成签到,获得积分10
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103513
求助须知:如何正确求助?哪些是违规求助? 3641221
关于积分的说明 11538535
捐赠科研通 3349869
什么是DOI,文献DOI怎么找? 1840540
邀请新用户注册赠送积分活动 907555
科研通“疑难数据库(出版商)”最低求助积分说明 824725