Machine Learning Compared With Conventional Statistical Models for Predicting Myocardial Infarction Readmission and Mortality: A Systematic Review

医学 机器学习 心肌梗塞 心脏病学 重症监护医学 内科学 计算机科学
作者
Sung Min Cho,Peter C. Austin,Heather J. Ross,Husam Abdel‐Qadir,Davide Chicco,George Tomlinson,Cameron Taheri,Farid Foroutan,Patrick R. Lawler,Filio Billia,Anthony O. Gramolini,Slava Epelman,Bo Wang,Douglas S. Lee
出处
期刊:Canadian Journal of Cardiology [Elsevier BV]
卷期号:37 (8): 1207-1214 被引量:43
标识
DOI:10.1016/j.cjca.2021.02.020
摘要

Machine learning (ML) methods are increasingly used in addition to conventional statistical modelling (CSM) for predicting readmission and mortality in patients with myocardial infarction (MI). However, the two approaches have not been systematically compared across studies of prognosis in patients with MI.Following PRISMA guidelines, we systematically reviewed the literature via Medline, EPub, Cochrane Central, Embase, Inspec, ACM Digital Library, and Web of Science. Eligible studies included primary research articles published from January 2000 to March 2020, comparing ML and CSM for prognostication after MI.Of 7,348 articles, 112 underwent full-text review, with the final set composed of 24 articles representing 374,365 patients. ML methods included artificial neural networks (n = 12 studies), random forests (n = 11), decision trees (n = 8), support vector machines (n = 8), and Bayesian techniques (n = 7). CSM included logistic regression (n = 19 studies), existing CSM-derived risk scores (n = 12), and Cox regression (n = 2). Thirteen of 19 studies examining mortality reported higher C-indexes with the use of ML compared with CSM. One study examined readmissions at 2 different time points, with C-indexes that were higher for ML than CSM. Across all studies, a total of 29 comparisons were performed, but the majority (n = 26, 90%) found small (< 0.05) absolute differences in the C-index between ML and CSM. With the use of a modified CHARMS checklist, sources of bias were identifiable in the majority of studies, and only 2 were externally validated.Although ML algorithms tended to have higher C-indexes than CSM for predicting death or readmission after MI, these studies exhibited threats to internal validity and were often unvalidated. Further comparisons are needed, with adherence to clinical quality standards for prognosis research. (Trial registration: PROSPERO CRD42019134896).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野元枫完成签到 ,获得积分10
刚刚
搜集达人应助111采纳,获得10
刚刚
刚刚
Zoe完成签到,获得积分10
刚刚
Wtony发布了新的文献求助10
2秒前
简简单单完成签到 ,获得积分10
2秒前
研友_2484完成签到,获得积分10
3秒前
4秒前
Vxfhfdhkcds发布了新的文献求助10
7秒前
lu完成签到,获得积分10
8秒前
倔强的大萝卜完成签到 ,获得积分0
10秒前
10秒前
11秒前
冷艳的纸鹤完成签到,获得积分10
11秒前
Christine完成签到,获得积分10
12秒前
星辰大海应助chenhua5460采纳,获得10
13秒前
13秒前
gemini0615发布了新的文献求助30
14秒前
小宋发布了新的文献求助10
15秒前
冷酷蛋挞发布了新的文献求助10
18秒前
Jasper应助gemini0615采纳,获得10
20秒前
科研通AI5应助吾问无为谓采纳,获得10
21秒前
努力游游完成签到,获得积分10
21秒前
Vxfhfdhkcds完成签到 ,获得积分10
22秒前
烟花应助忧心的映真采纳,获得10
22秒前
22秒前
23秒前
醉熏的红酒完成签到,获得积分10
23秒前
winner2030完成签到 ,获得积分20
23秒前
知墨完成签到 ,获得积分10
24秒前
达达尼发布了新的文献求助10
25秒前
27秒前
逸兴遄飞发布了新的文献求助10
27秒前
chenhua5460发布了新的文献求助10
30秒前
Ling完成签到,获得积分10
30秒前
30秒前
仿生人完成签到,获得积分10
31秒前
小南发布了新的文献求助10
33秒前
zhangxinask完成签到,获得积分10
33秒前
gemini0615发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781113
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227650
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734