Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images

分割 计算机科学 人工智能 视网膜 眼底(子宫) 模式识别(心理学) 计算机视觉 眼科 解剖 医学
作者
José Morano,Álvaro S. Hervella,Jorge Novo,José Rouco
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:118: 102116-102116 被引量:30
标识
DOI:10.1016/j.artmed.2021.102116
摘要

The study of the retinal vasculature represents a fundamental stage in the screening and diagnosis of many high-incidence diseases, both systemic and ophthalmic. A complete retinal vascular analysis requires the segmentation of the vascular tree along with the classification of the blood vessels into arteries and veins. Early automatic methods approach these complementary segmentation and classification tasks in two sequential stages. However, currently, these two tasks are approached as a joint semantic segmentation, because the classification results highly depend on the effectiveness of the vessel segmentation. In that regard, we propose a novel approach for the simultaneous segmentation and classification of the retinal arteries and veins from eye fundus images. We propose a novel method that, unlike previous approaches, and thanks to the proposal of a novel loss, decomposes the joint task into three segmentation problems targeting arteries, veins and the whole vascular tree. This configuration allows to handle vessel crossings intuitively and directly provides accurate segmentation masks of the different target vascular trees. The provided ablation study on the public Retinal Images vessel Tree Extraction (RITE) dataset demonstrates that the proposed method provides a satisfactory performance, particularly in the segmentation of the different structures. Furthermore, the comparison with the state of the art shows that our method achieves highly competitive results in the artery/vein classification, while significantly improving the vascular segmentation. The proposed multi-segmentation method allows to detect more vessels and better segment the different structures, while achieving a competitive classification performance. Also, in these terms, our approach outperforms the approaches of various reference works. Moreover, in contrast with previous approaches, the proposed method allows to directly detect the vessel crossings, as well as preserving the continuity of both arteries and veins at these complex locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴采文发布了新的文献求助10
刚刚
1秒前
脑洞疼应助Klenows采纳,获得10
5秒前
刘徐章发布了新的文献求助10
6秒前
du完成签到 ,获得积分10
7秒前
7秒前
小蘑菇应助ARIA采纳,获得10
8秒前
11秒前
12秒前
拾陆完成签到 ,获得积分10
13秒前
shiizii应助laola采纳,获得10
14秒前
15秒前
15秒前
16秒前
16秒前
18秒前
19秒前
OpangziO发布了新的文献求助10
19秒前
Skuld发布了新的文献求助10
19秒前
20秒前
casset发布了新的文献求助10
21秒前
白老师发布了新的文献求助10
22秒前
hh发布了新的文献求助10
22秒前
积极盼晴完成签到,获得积分10
22秒前
soory完成签到,获得积分10
22秒前
xxl完成签到,获得积分20
23秒前
23秒前
复杂萃完成签到,获得积分10
23秒前
hh发布了新的文献求助10
26秒前
OpangziO完成签到,获得积分10
26秒前
一颗白菜发布了新的文献求助10
27秒前
27秒前
vv123456ha发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
xiaohong发布了新的文献求助10
30秒前
球球发布了新的文献求助10
30秒前
打打应助hanleiharry1采纳,获得10
30秒前
casset完成签到,获得积分10
31秒前
33秒前
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026760
求助须知:如何正确求助?哪些是违规求助? 3566296
关于积分的说明 11351720
捐赠科研通 3297515
什么是DOI,文献DOI怎么找? 1816034
邀请新用户注册赠送积分活动 890437
科研通“疑难数据库(出版商)”最低求助积分说明 813620