COPD and Asthma Differentiation using Quantitative CT Biomarkers by Hybrid Feature Selection and Machine Learning

哮喘 慢性阻塞性肺病 医学 特征选择 计算机断层摄影术 放射科 内科学 机器学习 人工智能 计算机科学
作者
Konstantina Kontogianni,Amir Moslemi,Miranda Kirby,Judith Brock,Franziska Trudzinski,Felix J.F. Herth,Amir Moslemi
出处
期刊:Imaging [Akadémiai Kiadó]
卷期号:: PA1873-PA1873 被引量:1
标识
DOI:10.1183/13993003.congress-2021.pa1873
摘要

Introduction: There are considerable similarities between symptoms in chronic obstructive pulmonary disease (COPD) and asthma, and misdiagnosis can lead to inappropriate treatment. Computed tomography (CT) imaging can quantify lung disease features, and previous studies show structural differences in the airways and parenchyma features between COPD and asthma. The objective of this study was discriminate COPD and asthma using CT quantitative features and machine learning. Methods: Asthma and COPD patients were recruited from Thoraxklinik at Heidelberg University Hospital (Heidelberg, Germany). CT images were analyzed using VIDA Diagnostics. A total of 89 CT imaging features were investigated. For dimension reduction, hybrid filter and wrapper-based feature selection were used. For filter-based, factor analysis based on principal component analysis was used to select features and in the wrapper phase, particle swarm optimization was coupled with support vector machine algorithm to select the top features. Result: A total 95 subjects were investigated; n=47 asthma and n=48 COPD. There was no significant difference between the asthma and COPD participants for age (p=0.25), BMI (p=0.31) or FEV1 (p=0.43). A total of 7 imaging features were selected, and COPD and asthma were differentiated with 79% accuracy (PrecisionCOPD=87, RecallCOPD=76, F1-scoreCOPD=81, PrecisionAsthma=71, RecallAsthma=83, F1-scoreAsthma=77). Conclusion: Quantitative CT imaging can discriminate COPD and asthma patients using as few as 7 CT features with moderate accuracy. The hybrid feature selection significantly reduced the number of features and increased the machine learning performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十六发布了新的文献求助10
1秒前
JamesPei应助仗炮由纪采纳,获得10
1秒前
2秒前
2秒前
3秒前
ccc发布了新的文献求助10
4秒前
李健的小迷弟应助小爽采纳,获得10
4秒前
CR7应助爱听歌的从筠采纳,获得20
5秒前
5秒前
肥肥发布了新的文献求助10
5秒前
超A完成签到,获得积分20
5秒前
ago发布了新的文献求助10
6秒前
玖川完成签到,获得积分10
7秒前
英俊的铭应助Mine采纳,获得10
7秒前
hangjias完成签到 ,获得积分10
8秒前
安a完成签到 ,获得积分10
9秒前
自然亦巧发布了新的文献求助30
9秒前
唐泽雪穗发布了新的文献求助40
9秒前
李哈哈发布了新的文献求助10
10秒前
10秒前
杜妤涵完成签到,获得积分10
10秒前
十六完成签到,获得积分10
11秒前
子杰发布了新的文献求助10
12秒前
qda完成签到,获得积分10
12秒前
左手树完成签到,获得积分10
13秒前
肥肥完成签到,获得积分10
13秒前
hiahia完成签到,获得积分10
14秒前
喜悦寒凝完成签到,获得积分10
15秒前
人间惆怅客关注了科研通微信公众号
15秒前
所所应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
小明应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得20
16秒前
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726526
求助须知:如何正确求助?哪些是违规求助? 4083718
关于积分的说明 12629857
捐赠科研通 3790124
什么是DOI,文献DOI怎么找? 2093145
邀请新用户注册赠送积分活动 1118875
科研通“疑难数据库(出版商)”最低求助积分说明 995311