COPD and Asthma Differentiation using Quantitative CT Biomarkers by Hybrid Feature Selection and Machine Learning

哮喘 慢性阻塞性肺病 医学 特征选择 计算机断层摄影术 放射科 内科学 机器学习 人工智能 计算机科学
作者
Konstantina Kontogianni,Amir Moslemi,Miranda Kirby,Judith Brock,Franziska Trudzinski,Felix J.F. Herth,Amir Moslemi
出处
期刊:Imaging [Akadémiai Kiadó]
卷期号:: PA1873-PA1873 被引量:1
标识
DOI:10.1183/13993003.congress-2021.pa1873
摘要

Introduction: There are considerable similarities between symptoms in chronic obstructive pulmonary disease (COPD) and asthma, and misdiagnosis can lead to inappropriate treatment. Computed tomography (CT) imaging can quantify lung disease features, and previous studies show structural differences in the airways and parenchyma features between COPD and asthma. The objective of this study was discriminate COPD and asthma using CT quantitative features and machine learning. Methods: Asthma and COPD patients were recruited from Thoraxklinik at Heidelberg University Hospital (Heidelberg, Germany). CT images were analyzed using VIDA Diagnostics. A total of 89 CT imaging features were investigated. For dimension reduction, hybrid filter and wrapper-based feature selection were used. For filter-based, factor analysis based on principal component analysis was used to select features and in the wrapper phase, particle swarm optimization was coupled with support vector machine algorithm to select the top features. Result: A total 95 subjects were investigated; n=47 asthma and n=48 COPD. There was no significant difference between the asthma and COPD participants for age (p=0.25), BMI (p=0.31) or FEV1 (p=0.43). A total of 7 imaging features were selected, and COPD and asthma were differentiated with 79% accuracy (PrecisionCOPD=87, RecallCOPD=76, F1-scoreCOPD=81, PrecisionAsthma=71, RecallAsthma=83, F1-scoreAsthma=77). Conclusion: Quantitative CT imaging can discriminate COPD and asthma patients using as few as 7 CT features with moderate accuracy. The hybrid feature selection significantly reduced the number of features and increased the machine learning performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaolingcool发布了新的文献求助10
2秒前
victory_liu完成签到,获得积分10
9秒前
qq完成签到 ,获得积分10
13秒前
xy完成签到 ,获得积分10
18秒前
直率芮完成签到 ,获得积分10
22秒前
故意的问安完成签到 ,获得积分10
24秒前
ocean完成签到,获得积分10
24秒前
Li应助王大哥采纳,获得10
27秒前
Fx完成签到 ,获得积分10
36秒前
竞鹤发布了新的文献求助10
43秒前
狼来了aas完成签到,获得积分10
43秒前
h41692011完成签到 ,获得积分10
44秒前
邓代容完成签到 ,获得积分10
44秒前
snoke完成签到 ,获得积分10
48秒前
喝酸奶不舔盖完成签到 ,获得积分10
52秒前
竞鹤完成签到,获得积分10
52秒前
玩命的无春完成签到 ,获得积分10
57秒前
最美夕阳红完成签到 ,获得积分10
58秒前
淞淞于我完成签到 ,获得积分10
59秒前
柒八染完成签到 ,获得积分10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
ng完成签到 ,获得积分10
1分钟前
Never stall完成签到 ,获得积分10
1分钟前
某某完成签到 ,获得积分10
1分钟前
yingzaifeixiang完成签到 ,获得积分10
1分钟前
水电费黑科技完成签到,获得积分10
1分钟前
失眠的香蕉完成签到 ,获得积分10
1分钟前
飞快的孱完成签到,获得积分10
1分钟前
李新光完成签到 ,获得积分10
1分钟前
魔幻蓉完成签到 ,获得积分10
1分钟前
鼠鼠完成签到 ,获得积分10
1分钟前
现代完成签到,获得积分10
1分钟前
英姑应助细心的语蓉采纳,获得10
1分钟前
文献通完成签到 ,获得积分10
1分钟前
chenbin完成签到,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
back you up应助科研通管家采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
sheetung完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300956
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626